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Abstract

In this work, we propose new graph-based data model
and indexing to organize and manage video data. To con-
sider spatial and temporal characteristics of video, we
introduce a new graph-based data model called Spatio-
Temporal Region Graph (STRG). Unlike existing graph-
based data structures which provide only spatial features,
the proposed STRG further provides temporal features,
which represent temporal relationships among spatial ob-
jects. The STRG is decomposed into its subgraphs object
graphs (OGs) and background graphs (BGs). In addition,
a new distance measure, called Extended Graph Edit Dis-
tance (EGED), is introduced in metric space for matching
and indexing. Based on clustering and EGED, we pro-
pose a new indexing method STRG-Index, which is faster
and more accurate. We compare the STRG-Index with the
M-tree, which is a popular tree-based indexing method for
multimedia data. The STRG-Index outperforms the M-tree
in terms of cost and speed.

1. Introduction

With the recent advances in electronic imaging, video
devices, computing power, and network technologies, the
use of multimedia data in many applications has increased
significantly. Some examples of these applications are dis-
tance learning, digital libraries, video surveillance systems,
and medical videos. As a consequence, there are increasing
demands on modeling, indexing and retrieving these data.
Video is a medium of communication that delivers more in-
formation per second than any other elements of multime-
dia. However, the complexities of video data and their sheer
volume as well as the limitation of current video processing
techniques, have restricted progress on video data model-
ing, indexing and retrieval. To address the challenging prob-
lems, we propose a graph-based approach for modeling and
indexing video data.

Graph is a powerful tool for pattern representation
and classification in various fields [13, 2], such as image
processing, video analysis, and biomedical applications.
The primary advantage of graph-based representation is that
it can represent patterns and relationships among data eas-
ily. To take this advantage into video analysis, several stud-
ies have proposed the graph-based techniques [14, 18, 5, 9].
In Region Adjacency Graph (RAG) [14, 18], segmented re-
gions and spatial relationships among them are expressed as
nodes and edges, respectively. However, RAG cannot repre-
sent the temporal characteristic of video which is its repre-
sentative feature. Also, various graph matching algorithms
such as bipartite matching [5] and error-correcting match-
ing [9] have been used in video data. However, the existing
graph matching algorithms still require high computational
cost, and suffer from low accuracy since they consider only
the spatial feature to match video data.

In order to address the aforementioned problems, we
first propose a new graph-based video data structure, called
Spatio-Temporal Region Graph (STRG), which represents
spatio-temporal features, and the relationships among the
video objects [11, 10]. Region Adjacency Graph (RAG)
[18, 14] is generated from each frame, and STRG is con-
structed by connecting RAGs. The STRG is segmented into
a number of pieces corresponding to shots for efficiency.
Then, each segmented STRG is decomposed into its sub-
graphs, called Object Graph (OG) and Background Graph
(BG) in which redundant BGs are eliminated to reduce in-
dex size and search time. The proposed indexing starts with
clustering OGs using Expectation Maximization (EM) al-
gorithm [8] for more accurate indexing. To cluster them,
we need a distance measure between two OGs. For the dis-
tance measure, we propose Extended Graph Edit Distance
(EGED) because the existing measures are not very suit-
able for OGs. The EGED is defined in non-metric space
for clustering OGs, and it is extended to metric space to
compute the key values for indexing. Based on the clus-
ters of OGs and the EGED, we propose a new indexing
structure STRG-Index which provides efficient retrieval.



The contributions of the proposed work are as follows:

• We propose a new video data structure, STRG based
on graph representation. It can represent not only spa-
tial features of video objects, but also temporal rela-
tionships among them.

• We propose a new distance function, EGED which is
defined in both non-metric and metric spaces. Non-
metric EGED is used for matching video objects,
while metric EGED is used for indexing STRG. It
provides more accurate distance measure.

• We propose a new indexing structure, STRG-Index
which provides fast and accurate indexing since it uses
tree structure and data clustering.

The remainder of this paper is organized as follows. In
Section 2, we explain how to construct an STRG and how
to decompose STRG into OGs. In Section 3, we introduce
the EGED for graph matching, and a model-based cluster-
ing algorithm to group similar object graphs. We propose
STRG-Index for video data in Section 4. The performance
study is reported in Section 5. Finally, Section 6 presents
some concluding remarks.

2. STRG Construction

In this section, we describe Spatio-Temporal Region
Graph and Object Graph for video objects.

2.1. Spatio-Temporal Region Graph

For a given video, each frame is segmented into a num-
ber of regions using a region segmentation technique. Then,
Region Adjacency Graph (RAG) is obtained by converting
each region into node, and spatial relationships among re-
gions into edges [14], which is defined as follows:

Definition 1 Given the nth frame fn in a video, a Region
Adjacency Graph of fn, Gr(fn), is a four-tuple Gr(fn) =
{V,ES , ν, ξ}, where

• V is a finite set of nodes for the segmented regions in
fn,

• ES ⊆ V × V is a finite set of spatial edges between
adjacent nodes in fn,

• ν : V → AV is a set of functions generating node
attributes, and

• ξ : ES → AES
is a set of functions generating spatial

edge attributes.

The node attributes (AV ) represent size (i.e., number of
pixels), dominant color and location of corresponding re-
gion, the spatial edge attributes (AES

) represent the rela-
tionships between two adjacent nodes such as spatial dis-
tance and orientation. RAG is good for representing spa-
tial relationships among nodes indicating the segmented re-
gions. However, it cannot represent temporal characteris-
tics of video. We propose a new graph-based data structure
for video, Spatio-Temporal Region Graph (STRG) which is
temporally connected RAGs [11]. The STRG can handle
both temporal and spatial characteristics of video, and de-
fined as follows:

Definition 2 Given a video segment S, a Spatio-Temporal
Region Graph, Gst(S), is a six-tuple Gst(S) =
{V,ES , ET , ν, ξ, τ}, where

• V is a finite set of nodes for segmented regions from S,

• ES ⊆ V × V is a finite set of spatial edges between
adjacent nodes in S,

• ET ⊆ V × V is a finite set of temporal edges between
temporally consecutive nodes in S,

• ν : V → AV is a set of functions generating node
attributes,

• ξ : ES → AES
is a set of functions generating spatial

edge attributes, and

• τ : ET → AET
is a set of functions generating tempo-

ral edge attributes.

In STRG, the temporal edge attributes (AET
) represent

the relationships between corresponding nodes in two con-
secutive frames such as velocity and moving direction. Fig-
ure 1 (a) and (b) are actual frames in a sample video and
their region segmentation results, respectively. Figure 1(c)
shows a part of STRG for frames #141 − #143 constructed
by adding temporal edges which are horizontal lines be-
tween the frames.

An STRG is an extension of RAGs by adding temporal
edges (ET ) to them. ET represents temporal relationships
between corresponding nodes in two consecutive RAGs.
The main procedure of building STRG is therefore, how
to construct ET , which is similar to the problem of objects
tracking in a video sequence. To find the corresponding
nodes in two consecutive RAGs, we use a graph isomor-
phism and maximal common subgraph [2]. These algo-
rithms are conceptually simple, but have a high computa-
tional complexity. To address this, we decompose a RAG
into its neighborhood graphs (GN (v)) which are subgraphs
of RAG as follows:

Definition 3 GN (v) is the neighborhood graph of a given
node v in a RAG, if for any nodes u ∈ GN (v), u is the
adjacent node of v, and has one edge such that eS = (v, u).



Frame #141 Frame #142 Frame #143

(a) Actural Frames

(b) Region Segmentations

(c) STRG

Figure 1. Example of a part of STRG

Let G
m
N and G

m+1
N be sets of the neighborhood graphs

in mth and (m + 1)th frames respectively. For each node
v in mth frame, the goal is to find the corresponding target
node v′ in (m + 1)th frame. To decide these corresponding
nodes, we use the neighborhood graphs in Definition 3. For
each neighborhood graph GN (v) in G

m
N , the goal is con-

verted to finding the corresponding target graph GN (v′) in
G

m+1
N , which is an isomorphic or the most similar graph to

GN (v). First, we find the neighborhood graph in G
m+1
N ,

which is isomorphic to GN (v). Second, if we cannot find
any isomorphic graph in G

m+1
N , we find the most similar

neighborhood graph to GN (v) using a similarity measure,
SG(GN (v), GN (v′)), which is defined as follows:

SG(GN (v), GN (v′)) =
|GC |

min(|GN (v)|, |GN (v′)|) (1)

where |G| denotes the number of nodes of G, and GC is
the maximal common subgraph of GN (v) and GN (v′). GC

can be computed based on maximal clique detection [12].
For GN (v) ∈ G

m
N , GN (v′) is the corresponding neighbor-

hood graph in G
m+1
N , whose SG with GN (v) is the largest

among neighborhood graphs in G
m+1
N , and greater than a

certain threshold value. In this way, we find all pairs of cor-
responding neighborhood graphs (eventually corresponding
nodes) from G

m
N to G

m+1
N .

2.2. Object Graph

An STRG is first decomposed into Object Region
Graphs (ORGs) to model moving objects. We consider a
temporal subgraph that can be defined as a set of sequential
nodes connected to each other by a set of temporal edges

(ET ). An ORG is a special case of temporal subgraph of
STRG when the spatial edge set ES is empty. However, due
to the limitations of region segmentation techniques, dif-
ferent color regions belonging to a single object cannot be
detected as a single region. For instance, a body of person
may consist of several regions such as head, upper body and
lower body. Figure 2 (a) shows an object that is segmented
into four regions over three frames. Since there are four re-
gions in each frame, we build four ORGs, i.e. (v1, v5, v9),
(v2, v6, v10), (v3, v7, v11), and (v4, v8, v12) like Figure 2 (b).
Since they belong to a single object, it is better to merge
those ORGs into one.
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(a) Sample object segmented several parts

(b) Example of ORGs for (a)

(c) Merged OG
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Figure 2. The example of OG merging

For convenience, we refer to the merged ORGs as Object
Graph (OG). In order to merge two ORGs which belong
to a single object, we consider the attributes (i.e. velocity
and moving direction) of temporal edge (ET ). If two ORGs
have same moving direction and same velocity, these can
be merged into one. In Figure 2 (c), four ORGs are merged
into a single OG, i.e. (v2, v6, v10). After OGs are extracted,
the remainders of STRG represent background information
of a video. We call this graph as a Background Graph (BG)
that will be used for indexing in Section 4.

3. STRG Clustering

We cluster similar OGs into a group, in which we need
to match two OGs. For this graph matching, we introduce
a new distance measure, called Extended Graph Edit Dis-
tance (EGED) [10], which can handle temporal charac-
teristics of OGs, then present a clustering algorithm using
Expectation Maximization (EM).

3.1. Extended Graph Edit Distance

The purpose of the edit distance for graphs is to compute
the minimum cost of graph edit operations such as adding,



deleting, and changing nodes, to transform one graph to
the other. Since the main operations to edit graphs deal
with nodes and their attributes rather than edges, we con-
sider only the nodes and their attributes. Let OGs

m =
{vs

1, . . . , v
s
m, νs} and OGt

n = {vt
1, . . . , v

t
n, νt} be sth and

tth OGs with m and n number of nodes, respectively.

Definition 4 The Extended Graph Edit Distance (EGED)
between two object graphs OGs

m and OGt
n is defined as:

EGED(OGs
m, OGt

n) =



∑m
i=1 |vs

i − gi| if n = 1,∑n
i=1 |vt

i − gi| if m = 1,
min[EGED(OGs

m−1, OGt
n−1) + dist(vs

m, vt
n),

EGED(OGs
m−1, OGt

n) + dist(vs
m, gap),

EGED(OGs
m, OGt

n−1) + dist(gap, vt
n)]

otherwise.

where gap is an added, deleted or changed node, and gi is
a gap for ith node. And,

dist(vs
i , v

t
j) =




|vs
i − vt

j | if vs
i ,vt

j are not a gap
|vs

i − gj | if vt
j is a gap

|vt
j − gi| if vs

i is a gap.

For better readability, let v indicate a value ν(v) of node
attribute. dist is the cost function for editing nodes. De-
pending on how to select a gap (gi), various distance func-
tions are possible. For example, when gi = vi−1, the cost
function is the same as one in DTW, which does not con-
sider local time shifting. In our case, gi = vi−1+vi

2 is used
for dist, which can handle local time shifting [6].

However, as long as the cost function dist replicates the
previous nodes, EGED is no longer in metric space since
dist does not satisfy the triangle inequality. In order to sat-
isfy the triangle inequality, EGED is specialized to be met-
ric distance function (see Theorem 1) by comparing the cur-
rent value with the fixed constant.

Theorem 1 If gi is a fixed constant, then EGED is a met-
ric.

Theorem 1 can be proved by using a mathematic in-
duction. Due to lack of space, we omit a detailed proof.
EGEDM is used to indicate the metric version of EGED.

3.2. Clustering with EM + EGED

In order to group similar OGs, we employ a model-based
EM clustering algorithm [3] with EGED. Given M mu-
tually independent sample OGs, Y = {y1, . . . , yM}, the
d-dimensional Gaussian mixture density with EGED is
given by

p(Yj |Θ) =

K∑
k=1

wk

2π1/2|σk|e
− 1

2σ2 EGED(Yj ,µk)2 (2)

where K is the number of clusters, and wk (
∑K

k=1 wk = 1)
is the membership probability of the kth cluster. The log-
likelihood (L) of K mixture model is

L(Θ|Y ) = log

M∏
j=1

p(Yj |Θ) =

M∑
j=1

log

K∑
k=1

wkpk(Yj |θk) (3)

where each θk is the set of parameters of the kth cluster.
In order to find appropriate clusters, we estimate the opti-
mal values of the parameters (θk) and the weights (wk) in
Equation (3) using EM, which is a common procedure used
to find the Maximum Likelihood Estimates (MLE) of the
parameters iteratively. The EM produces the MLE of the
unknown parameters using two alternating steps:
E-step: It evaluates the posterior probability of yj , belong-
ing to each cluster k. Let hjk be the probability of the jth

OG for a cluster k, then it can be defined as follows:

hjk = P (k|Yj , θk) =
wk

pk(Yj |θk)

M-step: It computes the new parameter value that maxi-
mizes the probability using hjk in E-step as follows:

wk =
1

M

M∑
j=1

hjk, µk =

∑M
j=1 hjkYj∑M

j=1 hjk

σk =

∑M
j=1 hjkEGED(Yj , µk)2

∑M
j=1 hjk

The iteration of E and M steps is stopped when wk is
converged for all k. After the maximum likelihood model
parameters (Θ̂) in Equation (3) are decided, each OG is as-
signed to a cluster.

4. STRG Indexing

In this section, we propose a graph-based video index-
ing method, called Spatio-Temporal Region Graph Index
(STRG-Index), which uses the EGEDM as a distance mea-
sure in metric space, and clustered OGs. We illustrate the
structure and construction of STRG-Index, and discuss its
search algorithm.

4.1. STRG-Index Tree Structure

To build an index for video data, we adapt the procedure
of tree construction proposed in M-tree [7] since it has a
minimum number of distance computations and a good I/O
performance. In M-tree, a number of representative data
items are selected for efficient indexing. There are several
ways to select them such as Sampling or Random selection.
In the STRG-Index, we employ the clustering results to de-
termine the representative data items. The STRG-Index tree
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Figure 3. Example of STRG-Index tree struc-
ture

structure consists of three levels of nodes; shot node, cluster
node, and object node as seen in Figure 3.

The top-level has the shot node which contains the infor-
mation of each shot in a video. Each record in the shot
node represents a segmented shot whose frames share a
background. The record has a shot identifier (ShotID),
a key RAG (Grkey), an actual BG (BGr), and an associ-
ated pointer (ptr) which references the top of correspond-
ing cluster node. The following figure shows an example of
a record in the shot node.
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The mid-level has the cluster nodes which contain the
centroid OGs that represent cluster centroids. Each record
indicates a representative OG among a group of similar
OGs. A record contains its identifier (ClusID), a centroid
OG (OGc) of each cluster, and an associated pointer (ptr)
which references the top of corresponding object node. The
following figure shows an example of a record in a cluster
node.
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The low-level has the object nodes which contain OGs
belonging to a same cluster. Each record in the object
node represents an object in a video, and has the index key
(which is computed by EGEDM (OGm, OGc)), an actual
OG (OGm), and an associated pointer (ptr) which refer-
ences the actual video clip in the disk. The following figure
shows an example of a record in the object node.
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4.2. STRG-Index Tree Construction

Based on the STRG decomposition described in Section
2.2, an input video is separated into foreground (OG) and
background (BG) as subgraphs of the STRG. The extracted
BGs are stored at the root node without any parent. All
the OGs sharing one BG are in a same cluster node. This
can reduce the size of index significantly. For example, in
surveillance videos a camera is stationary so that the back-
ground is usually fixed. Therefore, only one record (BG)
in the shot node is sufficient to index the background of the
entire video.

We synthesize a centroid OG (OGc) for each cluster
which is a representative OG for the cluster. This cen-
troid OG is inserted into an appropriate cluster node as a
record. This centroid OG is updated as the member OGs are
changed such as inserting, deleting, etc. Also, each record
in a cluster node has a pointer to an object node.

The object node has actual OGs in a cluster, which are
indexed by EGEDM . To decide an indexing value for each
OG, we compute EGEDM between the representative OG
(OGc) in the corresponding cluster and the OG (OGm) to
be indexed. Since EGEDM is a metric distance by Theo-
rem 1, the value can be the key of OG to be indexed.

4.3. Search Algorithm

Once the STRG-Index is constructed, we can search and
retrieve videos using object-based search. For the object-
based search, we extract the background graph BGq and the
object graphs OGqs from a query video segment q using the
procedure described in Section 2.2. We employ k-Nearest
Neighbor (k-NN) search algorithm [17]. At the query time,
the BGq is compared to each record in the shot node to find
a matching background and a cluster node that it points to.
Then OGq is compared to the records in the cluster node
using EGED(OGq, OGc) to find a matching OGc and an
object node that it points to. Finally, the search algorithm
travels the object node to find similar OGs by comparing
EGEDM (OGq, OGc) to the index key values. Algorithm
1 outlines the pseudocode of object-based search algorithm
using the k-NN search. In case a query does not consider a
background, Step 2 of Algorithm 1 can be skipped, and the
search algorithm travels all cluster nodes in STRG-Index to
find the similar centroid OGs (OGc).
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5. Experimental Results

To assess the proposed method for clustering OGs, we
performed the experiments with the real video streams cap-
tured by a video camera. Table 1 shows the description
of the video and results of the experiments. The first two
videos (Room1 and Room2) were taken from a room in a
building, and the other two (Car1 and Car2) from outside,
which have some traffic scenes. The third and the fourth
columns of Table 1 are the number of actual video objects
and the number of correctly detected OGs, respectively. As
seen in the fifth column, the accuracy of generating OG
reaches up to 94.7% on average.

Table 1. Results of STRG construction and
clustering for real video streams

Video

Room1

Room2

Car1

Car2

Total

OG performance

Actual

OGs

Found

OGs

Accu-

racy

438 411 93.8%

159 147 92.5%

202 195 96.5%

210 203 96.7%

1009 956 94.7%

Clustering Error Rate

EM KM KHM

29.1%

22.7%

13.0%

13.3%

19.5%

33.6%

28.9%

17.6%

17.7%

24.5%

16.8%

14.4%

8.8%

9.5%

12.4%

Duration

40h 30m

4h 12m

15m

12m

45h 7m

We compare the performance of EM clustering algo-
rithm with K-means (KM) and K-harmonic means (KHM).
To be fair, all of the clustering algorithms use EGED. To
evaluate the clustering algorithm, we use the clustering er-
ror rate defined as:

Clustering Error Rate (%) =

(1 − Number of Correctly Clustered OGs

Number Of Total OGs
) × 100

Table 1 also shows that EM is around two times better than
KM and KHM in terms of the clustering error rate.

To demonstrate the performance of the proposed
STRG-Index, synthetic data is generated and used for the

experiments. Since an OG is a type of time-series data, we
generate new data by combining the Pelleg data set [15]
which is widely used to test clustering algorithms, with the
Vlachos data set [16] which is 2-D time-series data with
noises.

EGED vs. Graph Edit Distance
In order to evaluate the effectiveness of STRG-Index
and EGEDM , we first compare the performances of
two versions of STRG-Index, which are using EGEDM

and the classical edit distance. For the classical edit
distance, we use Bunke’s Graph Edit Distance (GED)
with the simple cost function used in [1], where all the
costs of editing nodes are set to one. Since the GED still
obeys the triangular inequality [6], it is in a metric space.
Therefore, we cluster OGs, and build an STRG-Index by
replacing EGEDM with GED. We compare the k-NN
query performance of STRG-Index using EGEDM with
GED by considering the number of distance computations
and the total processing time. Since the number of distance
computations performed during a query processing is the
dominant component [4], we consider it for evaluating the
performance of k-NN query. k neighbors range from 5
to 30 on the synthesized data set which contains 5 × 104

objects in the 480 clusters. Figure 4 (a) shows that the
number of distance computations for EGEDM is much
smaller (average 30%) than that for GED. However, when
the database size increases, the entire STRG-Index may not
be fit to the memory. Therefore, we perform 10-NN queries
using the STRG-Index on the data sets with various sizes
ranging from 1 × 104 to 10 × 104 objects. Figure 4 (b)
shows the total processing time which includes the distance
computations and the disk I/Os for 10-NN queries. It shows
that the total processing time for EGEDM is less than that
for GED. Figure 4 (c) shows the accuracy of each indexing
for the 10-NN query on a data set with 5 × 104 objects. In
order to measure the accuracy, the precision and the recall
of query results are computed and plotted. The query data
is composed of OGs that are not in the data sets, and the
query results are evaluated by the cluster memberships.
From Figure 4 (c), it is obvious that the STRG-Index
using EGEDM outperforms the STRG-Index using GED,
since GED cannot handle the time characteristic of OGs
appropriately. Overall, the STRG-Index is more effective
when it uses EGEDM .

STRG-Index vs. M-tree
Next, we compare STRG-Index with M-tree (MT) index
based on cost and accuracy. In the MT indexing, there are
several possibilities depending on the criteria used to se-
lect the representative data items. RANDOM (MT-RA) and
SAMPLING (MT-SA) methods are chosen for comparison
purpose since MT-RA is the fastest, and MT-SA is the most



(a) Distance computation for k-NN queries (b) Total processing time for 10-NN queries (c) Accuracy by precision and recall

Figure 4. Query performances of STRG-Index with EGEDM vs. STRG-Index with GED

accurate among the methods proposed in [7]. MT-RA se-
lects the reference object(s) randomly. In STRG-Index, we
use the EM clustering for selecting the representative nodes
(cluster nodes). Actually, we cannot use the EGED for
the MT since it needs a metric distance and does not use
any explicit clustering. Therefore, we use the EGEDM for
the MT construction where RANDOM or SAMPLE is used
for selecting representative nodes. In STRG-Index, we use
EGEDM for indexing, and EM clustering for selecting the
cluster nodes.

In order to validate the quality of the STRG-Index
structure, we perform k-NN queries on the same synthe-
sized data set used in the above experiments. As seen in
Fig. 5 (a), the number of distance computations to process
k-NN queries using the STRG-Index is much smaller
(average 22%) than that using either the MT-RA or the
MT-SA. Figure 5 (b) shows the total processing time of
10-NN queries on the data sets ranging from 1 × 104 to
10 × 104 objects. The total processing time for 10-NN
query using an STRG-Index is similar to that using MT-SA,
and much less than that using MT-RA. This means that the
performance of k-NN query using the STRG-Index is better
than that using the MT index since both STRG-Index and
MT use the same distance measure EGEDM . Figure 5 (c)
shows the accuracy of each indexing structure for the k-NN
query. As seen in the figure, the STRG-Index outperforms
both MT-RA and MT-SA. These results demonstrate that
the STRG-Index outperforms the M-tree index in terms of
both cost and accuracy.

Efficiency and Scalability of STRG-Index
Figure 6 (a) shows the average time elapsed in building an
index structure for databases of different sizes. From this
figure, the time to build a STRG-Index is much less (15%
to 50%) than that to build either MT-RA or MT-SA, even
though both STRG-Index and MT have a similar tree struc-
ture. The complexity of building the STRG-Index is same
as that of clustering because the index structure is built dur-
ing the clustering process. However, the MT uses a split

procedure during the index construction, which takes more
time.

Concerning the scalability of STRG-Index with respect
to the number of clusters, we compare the size of scalable
STRG-Index, where actual OGs are removed, with that of
the STRG-Index as the number of clusters increases from
48 to 480. Each cluster has 1,000 objects, which means
the total number of objects increases from 4.8 × 104 to
4.8×105. As seen in Figure 6 (b), the sizes of both scalable
STRG-Index and general STRG-Index scale linearly with
respect to the number of clusters, but the size of scalable
STRG-Index is much smaller than that of general STRG-
Index. This addresses the problem when the database size
increases arbitrarily large.

6. Concluding Remarks

In this work we propose a new graph-based data model,
spatio-temporal region graph (STRG) representing spatial
and temporal relationships among objects in a video. After
an STRG is constructed, it is decomposed into object graphs
(OGs) and background graph (BG). For unsupervised learn-
ing, we cluster similar OGs into a group. In addition, ex-
tended graph edit distance (EGED) is introduced for graph
matching. The EGED is defined on metric spaces and used
for indexing key values. Using clustered OGs, we propose
a graph-based video indexing method, called STRG-Index.
Experimental results on both synthetic data and real video
data show the effectiveness and accuracy of the proposed
approach.
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