EE 403 RF CMOS Circuits Professor Hassan Bajwa

OFFICE:	Tech 154,
OFFICE HOURS:	4:30-5:30 TUE, WED & TH;
OFFICE PHONE:	576-4571
E-MAIL ADDRESS:	hbajwa@bridgeport.edu
CLASS HOURS:	Thursday 06:00PM - 08:30PM, Mandeville Hall, Room 3

Objective: The objective of the course is introduction of fundamental concepts of RF circuit designing. Students will learn about designing of RF transceiver-receivers at architectural, circuits and device level.

Textbook: (REQUIRED)

The design of CMOS radio-frequency integrated circuits, Thomas H. Lee. Cambridge ; New York, NY, USA : Cambridge University Press, 1998.

Reference: (Optional)

RF microelectronics, Behzad Razavi. Upper Saddle River, NJ : Prentice Hall, c1998

No		Topics		
1	Communication Systems Overview		1Wk	
	\succ	History of wireless communication		
	\succ	Shannon modulation and Propagation		
	\succ	Introduction of communication circuits		
	\succ	Transmitter Receiver design overview		
2	Comm	unication electronics Review of BTS and MOS	2Wk	
	\succ	Current Mirrors Basic current mirror		
	\succ	Amplifiers (Common-source, common-drain, common-gate amplifiers)		
	Differential Amplifiers Common mode and differential gain, Small signal			
		analysis		
	\succ	Output Stages (Power amplification, MOS power amplifiers, efficiency)		
3	RLC Networks 1		1Wk	
		Parallel RLC Tank		
	\succ	Serial RLC Network		
	\succ	RLC Network and Impedance Transformers		
	\succ	Characteristics of passive IC Components at high frequency		
	\checkmark	Interconnect options at high frequency		
4	Distributed Systems and Smith Charts		1Wk	
	\succ	Lumped and Distributed Regime		
	\succ	Transmission lines		
	\succ	Smith Chart		
	\checkmark	S parameters		
5	Noise		1Wk	
	\succ	Thermal Noise		
	\succ	Short Noise		
	\succ	Flicker Noise		

Tentative Syllabus

	\checkmark	Noise in communication circuits	
	\succ	Noise modeling	
6	LNA I	Design	2Wk
	\succ	MOSFET Two-Port Noise parameters	
	\succ	LNA Topologies	
	\succ	Power Match vs. Noise Match	
	\succ	Examples	
7	Mixer	Design	1Wk
	\succ	Mixer fundamentals	
	\succ	Linear Mixers	
	\succ	Examples	
8	RF Amplifier Design		2Wk
	\succ	Amplifier Classes	
	\succ	Power Amplifier	
	\succ	Modulation of Power Amplifier	
9	PLL		1Wk
	\succ	History	
	\succ	Linearized PLL Models	
	\succ	Noise properties of PLL	
10	Oscilla	tor and Synchronizer	1Wk
	\succ	Resonator	
	\succ	Tuned Oscillators	
	\succ	Negative Resistance Oscillator	

Assessment

Tentative schedule for the assignments and exams:

Assessment procedure	Date	Proportion
Homework	TBA	5%
Midterm	October 17 th	20%
Final	Final Examination Week	25%
Projects (CMOS LNA design,	TBA	50%
Mixers, Oscillators, Filters etc.)		

Midterm and final: Both midterm and final are in-class open book exams (only text book and handwritten class notes are allowed). The final is a cumulative test exam

Project: Each student is required to submit atleast three projects during the semester. Each project report include detailed literature search and hand calculations. Simulation results in general agree with hand calculation results, if results are not as expected student need to explain his or her results in detail. Reports format will be provided during the semester.

Homework: I encourage every one to take the homework very seriously as they will help you prepare for the exams Homework is due <u>at the beginning of class</u>, I will not accept any homework after I start the lecture.

Cheating

Cheating includes and is not limited to looking at a neighbor's answer sheet during an in-class exam, copying the solution of assignment. You are encouraged to discuss homework problems with you class mates but every students is expected to solve problems by themselves.