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An Efficient Parallel Algorithm for the Inverse of a Banded Matrix in the Maximum Entropy Sense
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Abstract: This paper develops a new parallel algorithm (MIMD-PRAM, as well as a multithreaded implementation for SMP machines) for computing the inverse of a banded matrix when extended in its maximum entropy sense. The algorithm developed here computes the inverse in two parallel steps. The first parallel step uses a modified Schur’s complement technique to compute the individual inverses in each of the block matrices in parallel. The second parallel step then adds the overlapped sub-blocks inside the band. The parallel time complexity of our algorithm is O(bw3) requiring n/((bw-1)/2) –1 processors, where matrix is of size nxn having a bandwidth of bw. The parallel time required is independent of the size of the matrix and only depends upon the bandwidth of the matrix if n/((bw-1)/2) –1 processors are employed. We also provide a multithreaded implementation of the algorithm for use in SMP machines so that the algorithm can be used without requiring n/((bw-1)/2) –1 number of processors. Even in the serial implementation, the algorithm developed here is considerably better than existing serial algorithms for computing the banded inverse in the maximum entropy sense.
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1. Introduction

Specialized extensions of banded matrices have been explored by many researchers in the last two decades. Examples of applications where extension or completion problems arise include entropy methods for missing data, signal and image processing, molecular conformation problem in Chemistry, systems theory, discrete optimization, data compression etc.. [1-4]. One special extension of a banded matrix is known as extension in the maximum entropy sense [5-6]. The maximum entropy extension of a banded matrix with bandwidth bw is defined to be an extension that causes the inverse of the extended matrix to be banded with a bandwidth bw as well. For example consider the banded matrix M1 as shown below,
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, then 
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 is a full matrix.

However, if M1 is extended to a matrix M1ext by changing the zero entries outside the band such that the inverse of M1ext  is banded with the same bandwidth as M1, then the M1ext is known as the extension of M1 matrix in the maximum entropy sense.


The standard technique for computing the inverse of a banded nxn matrix is based on a triangular decomposition such as LUD or Cholesky. After the decomposition is carried out, n systems of linear equations are solved in the back substitution phase to complete the inverse. Another approach to computing the inverse of a matrix is based on recursive block partitioning [7]. In this approach, the inverse is expressed in terms of its four blocks as,
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Then
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(1)

where 
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 and B are non-singular).

The matrix B is known as the Schur’s complement. Parallelization of the Schur’s technique has been studied in [8-9]. For banded matrices, since the inverse is a full matrix, the Schur’s complement technique as described in [7] is not efficient. A faster approach based on the Schur’s complement (than the LUD based inverse approach) has been developed in [10]. The algorithm developed in this paper uses some of the ideas presented in [10] to develop a highly efficient parallel algorithm for the special inverse of the banded matrix. The inverse computed by our algorithm is the inverse of the maximum entropy extension of a given banded matrix.


It has been demonstrated that Gauss-Markov random processes have covariance matrices whose inverses are banded when the optimality criteria of maximum entropy is applied. Traditionally, either iterative solutions (Yule-Walker) or matrix factorization techniques such as LUD and Cholesky have been used to compute the specialized inverse. Recently, a solution to the band matrix inverse for special matrices whose inverses are banded has been developed in [11-12]. The algorithm in [11-12] also uses the Schur’s complement computations somewhat similar to our technique. However, their solution involves computation of the inverses of the principal minors of elements in the band and then adding such inverses to the corresponding positions. Even though the approach in [11-12] can be implemented in a parallel form with good parallelism, the algorithm developed in this paper requires less computations and lower number of processors. For example, our algorithm does not require computing the additional inverse of the overlapped block matrix as is needed by the algorithm of [11-12].

2. Formulation of the Parallel Algorithm
Any banded matrix can be considered as a block tridiaogonal matrix. For example the matrix A shown below has a bandwidth of 5. However, by grouping into overlapping blocks of size 2x2 (as shown below), it becomes a block tridiagonal matrix.
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(2)

Any block tridiagonal matrix can thus be expressed as,
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where D is the matrix containing the main diagonal blocks of A, L contains the blocks in the lower diagonal (below the main diagonal), and U contains the upper diagonal blocks. 

If the off-band data is set to zero (blocks outside the 3 diagonals), then the inverse of the block tridiagonal matrix is full in general. However, if the off-band data is defined by extending the matrix as:
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then 
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 has block tridiagonal inverse (same bandwidth as A, and 
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 is the extension of A in the maximum entropy sense), and the inverse is given by:
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To determine the inverse of 
[image: image14.wmf]A
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, our parallel algorithm computes the inverse of each 2x2 block by the following partial Schur like operation:
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(4)

(all blocks compute this except the first one)

We can save some matrix multiplications by reorganizing (4) as, 
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(5)

where 
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  i.e., the computed values in the A12 and A21 positions respectively.

The very first block, however, needs the full Schur operation (forward and back inverses) according to the following computation:
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(6) 

(the first block computes this way)

which can also be converted to the form shown in (5) to save on matrix multiplications. All computations of the type shown in (5) and (6) are carried out in parallel for all the 2x2 blocks in the banded matrix.

The final inverse of 
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 is computed by adding the block entries in the overlapping 2x2 blocks. Since the block inverses can be computed in all 2x2 blocks independently, these computations can take place in parallel. In the second parallel step, the computed inverses in all overlapping blocks are added to yield the final inverse of 
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 in the maximum entropy sense. Thus our algorithm yields maximal parallelism and any band matrix inverse can be computed in the maximum entropy sense in two parallel steps with each processor requiring to compute the partial Schur operation as shown above in (5) (except one processor will compute complete inverse by the Schur technique in the very first block) of a 2x2 block with block size (bw-1)/2 x (bw-1)/2, where bw is the bandwidth of the banded matrix.


To explain the algorithm further, we provide a simple example. Consider a 4x4 banded matrix as shown below. The division into block tridiagonal form is also indicated.
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All four blocks will compute the Schur operation in parallel. The first block will compute the full Schur operation as indicated by (6) while the remaining three will do the partial Schur computation as indicated by (5).

First block computes full Schur operation,
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Partial Schur inverse is computed in block 2 as (computations of (5)),
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Similarly, blocks 3 and 4 also do the partial Schur computation.
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Now, the specialized inverse of the banded matrix can be computed by assembling all the 2x2 block inverses, and adding the entries in the overlapped positions in the matrix. The resulting inverse in the maximum entropy sense is:


[image: image27.wmf]ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

=

-

1

1

0

0

0

6

.

0

4

.

0

2

0

0

0

3

7

1

0

0

0

5

.

0

0

1

0

0

0

25

.

0

1

~

1

A



[image: image28.wmf]1
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 is the inverse of the maximum entropy extension of A. Further taking the inverse of the above matrix, will yield the maximum entropy extension of A as,
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A partial C++ code implementing the parallel algorithm is described below. The constructs needed for a parallel processor implementation in a shared memory environment (PRAM) are indicated in boldface in the comment fields. These parallel constructs forall, endsync are general and can be changed to the exact syntax required by a given parallel language. The forall construct indicates parallel execution of the iterations of the for loop, while the endsync provides the barrier synchronization, requiring all parallel steps to be completed before proceeding to the next parallel step. 

A multithreaded implementation of the algorithm is also given in Appendix A.

int main() {


Matrix m1(1000,1000); 
// Matrix is a C++ class with all overloaded operators and an inv





// function that computes the full inverse of a Matrix


int N = 1000; int bw = 101; int block_size = (bw-1)/2;


initialize_matrix(m1,N,bw);

    
int block_count = (N/block_size)-1; // total number of blocks


Matrix ** mresult = new Matrix * [block_count];  // individual block results


for (i = 0; i < block_count; i++)



mresult[i] = new Matrix(block_size*2,block_size*2);


//----parallel step 1 - compute Schur's inverses in blocks


int cnt = 0; // all iterations of the i loop can be executed in parallel


for (i = 0; i < N-block_size; i = i + block_size) {  // forall in a PRAM implementation



if (i == 0) // compute full Schur like inverse in first block as defined by (6)




(*mresult[cnt++])=Schur_inverse_block(m1,0,block_size); 



else
    // compute partial Schur in other blocks as defined by (5)




(*mresult[cnt++])=Schur_inverse_partial(m1,i,block_size);


}


//---endsync – wait for all iterations to finish


//----parallel step 2 - Add the submatrices in overlapping regions

    
int j, myi=0, myj=0; cnt = 0; // all iterations of k loop can be executed in parallel


for (int k = 0; k < N-block_size; k = k+block_size) // forall in PRAM case


{



for (i = 0; i < block_size*2; i++)  // --copy the block matrix in m1



{




myj = k;




for (j = 0; j < block_size*2; j++) {





m1(myi,myj) = (*mresult[cnt])(i,j);





myj++;




}




myi++;



}



//--- add overlapping blocks----



if (k < N-block_size-block_size) {




for (i = 0; i < block_size; i++) {





for (j = 0; j < block_size; j++) {






(*mresult[cnt+1])(i,j) = (*mresult[cnt+1])(i,j) +







(*mresult[cnt])(i+block_size,j+block_size);





}




}



}



myi=myi-block_size;



cnt++;


}

 
m1.print();  // now contains inverse in the maximum entropy extension sense


return 0; 

}

3. Analysis and Results
By examining the computations required in the two parallel steps as described in (5) and (6), we note that there are eight matrix multiplications, two matrix inverses and one matrix subtraction required in the first parallel step in each 2x2 block of the block-triangular matrix. The first 2x2 block will require an extra addition as indicated by (6). Thus the parallel time needed to compute the first step is approximately:

8
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(2m3) + 2
[image: image31.wmf]´

(2.5 m3 + 2 m2) + 2 m2  

where m = (bw-1)/2 is the sub block size in a 2x2 block matrix. 

The second parallel step requires a time of  m2 since only one matrix addition is involved. Thus the overall parallel algorithm has a time requirement of 8
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(2m3) + 2
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(2.5 m3 + 2 m2) + 2 m2 +  m2  

In a C++ implementation of our parallel algorithm, the exact operation count (Floating Point operations – Flops) for different bandwidths for a 1000x1000 matrix and the optimum processor requirement for minimum execution time is shown in the following table. 

	Bandwidth of the Matrix
	Flops in Parallel Step 1

(each block)
	Flops in Parallel Step 2

(each block)
	Processors required for best execution time

	11
	2525
	25
	199

	21
	20750
	100
	99

	51
	329625
	625
	39

	101
	2651750
	2500
	19

	201
	21273500
	10000
	9


Table 1: Parallel Flops and Processors required for a

1000x1000 matrix with different bandwidths.

In comparing the algorithm developed in this paper to the recent algorithm of Kavcic and Moura [12], we note that both algorithms can be implemented in a parallel form requiring only two parallel steps. However, the computations required by the Kavcic and Moura’s algorithm are far greater than our algorithm, especially when the bandwidth of the matrix increases. The Kavcic and Moura’s algorithm computes the banded matrix inverse in the maximum entropy sense by successively adding and subtracting the block inverses in the diagonal and the overlapped block matrices. Their computation is indicated by the following equation:
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(7)

In the above equation, inverse of matrix R is L-banded (L=(bw-1)/2), and 
[image: image35.wmf]i
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 indicates principal minor of matrix R defined by columns i through j.  As an example, consider the 6x6 matrix with a bandwidth of 5, as shown below.
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The algorithm of Kavcic and Moura [12] will require four inverses of size 3x3 to be computed and three inverses of size 2x2 in the overlapped positions. The overall inverse is obtained by adding the overlapped positions in 3x3 inverses and subtracting the overlapped positions for the 2x2 inverses in the band.

Compare this to the algorithm developed in this paper. Our algorithm breaks the banded matrix in the block-tridiagonal form, and requires only two inverses of size 4x4 (one of these is computed by equation (5) and the other by (6)).
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No inverse in the overlapped regions is required by our algorithm, instead a simple addition of the overlapped entries in the individual special inverses yields the correct result. 

We also implemented the algorithm of Kavcic and Moura [12] in both a serial and parallel form, and compared the processor requirements (for best execution time) and FLOP counts to our algorithm. Table 2 shows a comparison of the parallel implementation of the two algorithms. 

	Bandwidth of the Matrix
	Flops in Parallel Step 1
(each block)

Kavcic&Moura’s algorithm
	Processors required for best execution time

Kavcic&Moura’s Algorithm
	Flops in Parallel Step 1

(each block)

New Algorithm 
	Processors required for best execution time

New Algorithm

	11
	527
	1989
	2525
	199

	21
	3377
	1979
	20750
	99

	51
	45877
	1949
	329625
	39

	101
	349877
	1899
	2651750
	19

	201
	2732252
	1799
	21273500
	9


Table 2: Comparison of Parallel Flops and Processors required for a

1000x1000 matrix with different bandwidths for the two Algorithms.

Note that both algorithms can compute the special banded inverse in two parallel steps. However, the processors required to obtain this optimum parallel time by our new algorithm is significantly less as compared to that of [12]. The main reason is that our algorithm iterates on block matrices of size (bw-1)/2, whereas the algorithm of 12 has to compute each minor matrix in the band (i.e., it proceeds one row at a time), as indicated by 7. Thus even for a serial implementation, our new algorithm is very efficient as compared to 12, and this efficiency obviously increases as the bandwidth increases. The following figure shows a plot of the FLOP counts of the serial implementations of the two algorithms (Mahmood&Dichter is the new algorithm developed in this paper).
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4. Conclusions
We have developed a new parallel algorithm (MIMD-PRAM class, and also implemented anMP version) in this paper, which computes the inverse of a banded matrix in its maximum entropy sense. The algorithm uses the Schur’s complement technique to decouple the computations required in each block of the banded matrix. The intuition for this decoupling came from an earlier work on the inverse computations that the authors had developed in  [10]. The parallel time complexity of our algorithm is O(bw3) requiring N/((bw-1)/2) –1 processors where matrix is of size NxN. The parallel algorithm developed here is maximally parallel in the sense that its parallel time is independent of the size of the matrix and only depends upon the bandwidth of the matrix if N/((bw-1)/2) –1 processors are available. The algorithm has been implemented in C++ and tested successfully for its correctness and parallel operation for varying matrix sizes with different bandwidths. We have also compared its parallel and serial efficiency against a recently reported algorithm and have demonstrated that our new algorithm requires significantly less processors to obtain the ideal parallel execution time and also the serial efficiency of our algorithm is better than existing algorithms.
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Appendix A.

Multithreaded Implementation of the Parallel Algorithm for Computing the Inverse of a Banded Matrix in its Maximum Entropy Sense

The following program creates one thread for each block in the first parallel step. The total number of blocks is (N/((bw-1)/2))-1. After all the threads complete in the first parallel step, a thread per block is created again for the second parallel step.

// It uses a Matrix class which has all necessary operators overloaded and an inv function for 

// computing the inverse of a block. Windows OS –using MFC library for multithreading.

//---------------testmain.cpp-----------------------

#include "Matrix.h"

#include <iostream.h>

#include <stdlib.h>

#include <time.h>

#include <afxwin.h>   

 void Initialize_Matrix(Matrix & m1, int bw, int & block_count);

 void AssembleSubmatrices(Matrix & temp, Matrix & A11, Matrix & A12, Matrix & A21,





  Matrix & A22, int bsize);


UINT Schur_inv_block(LPVOID p1);      // thread function for first block - step 1


UINT Schur_inv_partial(LPVOID param); // thread function for step1 - rest of blocks

    
UINT CopyAndAddOverlappedSubBlocks(LPVOID param); // thread function for step 2

    
const int N=1000;




// NxN size of the matrix

    
int subblock_size;


Matrix ** mresult;

// matrix result blocks after step 1


Matrix m1(N,N);


CWinThread ** pThread;
// global - CWinThread array for keeping








// track of each thread - joining, termination


struct ThreadParams1 {
// parameters to be passed to thread function



Matrix * mp;

// for parallel step 1 of algorithm



int block_num;


};


struct ThreadParams2 {
// parameters to be passed to thread function



int k;



// for parallel step 2 of the algorithm



int myi;



int cnt;


};

 int main() {


int bw = 101;



// bandwidth of the matrix


subblock_size = (bw-1)/2;  


int block_count;

// total number of blocks


Initialize_Matrix(m1,bw, block_count);


Matrix moriginal(m1);


//--------------parallel step 1 - compute Schur's inverses in blocks


int cnt = 0;


ThreadParams1 * PM = new ThreadParams1[block_count]; // parameters to thread functions

     
int myi = 0;


for (int i = 0; i < N-subblock_size; i = i + subblock_size) {



if (i == 0) {
// compute full Schur like inverse in first block




PM[0].mp = mresult[cnt++] ;




PM[0].block_num = 0;




pThread[0] = AfxBeginThread(Schur_inv_block,&PM[0]);




pThread[0]->m_bAutoDelete = FALSE; 



}



else


// compute partial Schur in other blocks



{




PM[myi].mp = mresult[cnt++] ;




PM[myi].block_num = i;




pThread[myi] = AfxBeginThread(Schur_inv_partial,&PM[myi]);




pThread[myi]->m_bAutoDelete = FALSE; 



}



myi++;


}


//-----join all threads for step 1------------------------

    for (i = 0; i < block_count; i++) {



WaitForSingleObject(pThread[i]->m_hThread,INFINITE); // wait for threads to terminate



delete pThread[i];


}


//---------parallel step 2 - Add the submatrices in overlapping regions


myi = 0;


cnt = 0;


ThreadParams2 * PM2 = new ThreadParams2[block_count]; // parameters to thread function


for (int k = 0; k < N-subblock_size; k = k+subblock_size)


{



PM2[cnt].cnt = cnt; PM2[cnt].k=k; PM2[cnt].myi = myi;



pThread[cnt] = AfxBeginThread(CopyAndAddOverlappedSubBlocks,&PM2[cnt]);



pThread[cnt]->m_bAutoDelete = FALSE; 



myi=myi+subblock_size;



cnt++;


}


//-----join all threads for step 2------------------------

    for (i = 0; i < block_count; i++) {



WaitForSingleObject(pThread[i]->m_hThread,INFINITE); // wait for threads to terminate



delete pThread[i];


}


delete [] PM;


cout << "Original matrix" << endl;


moriginal.print();


cout << " Inverse of the Maximum entropy extension of matrix " << endl;


m1.print();


return 0; 

}

/*-------------end main()--------------------------------------------*/

/*----------------CopyAndAddOverLappedSubBlocks()--------------------*/

 UINT CopyAndAddOverlappedSubBlocks(LPVOID param) { // thread function for step 2


 int i, j, myi, myj, k, cnt;


 ThreadParams2 *pm = (ThreadParams2 *) param; // extract the parameters for the function


 k = pm->k; myi = pm->myi; cnt = pm->cnt;


 for (i = 0; i < subblock_size*2; i++)



{




myj = k;




for (j = 0; j < subblock_size*2; j++) {





m1(myi,myj) = (*mresult[cnt])(i,j);





myj++;




}




myi++; // row number



}



//--- add overlapping blocks----



if (k < N-subblock_size-subblock_size) {




for (i = 0; i < subblock_size; i++) {





for (j = 0; j < subblock_size; j++) {






(*mresult[cnt+1])(i,j) = (*mresult[cnt+1])(i,j) +









(*mresult[cnt])(i+subblock_size,j+subblock_size);





}




}



}


return 0;

 }

/*---------------------Schur_inv_block()-----------------------------*/

 UINT Schur_inv_block(LPVOID param) {


ThreadParams1 * pp = (ThreadParams1 *) param;


Matrix minv(subblock_size*2,subblock_size*2);  // copy part of m1 into m2


minv.copy(m1,0,0);




// take inverse

    Matrix m2(subblock_size*2,subblock_size*2);


m2 = inv(minv,subblock_size*2);  // copy it back

    *(pp->mp) = m2;


return TRUE;

}

/*------------------Schur_inv_partial()------------------------------*/

 UINT Schur_inv_partial(LPVOID param) {


ThreadParams1 * pp = (ThreadParams1 *) param;


//----create A11, A12, A21 and A22 submatrices from part of m1


int start = pp->block_num;


Matrix A11(subblock_size,subblock_size);  


A11.copy(m1,start,start);





    Matrix A12(subblock_size,subblock_size);


A12.copy(m1,start,start+subblock_size);


Matrix A21(subblock_size,subblock_size);


A21.copy(m1,start+subblock_size,start);


Matrix A22(subblock_size,subblock_size);


A22.copy(m1,start+subblock_size,start+subblock_size);


//------------------------------------------


Matrix B(subblock_size,subblock_size);


Matrix A11inv(subblock_size,subblock_size);


A11inv = inv(A11,subblock_size);


Matrix Binv(subblock_size,subblock_size);


B = A22 - (A21 * A11inv * A12) ;


Binv = inv(B,subblock_size);


A22 = Binv;


Matrix Aneg(subblock_size,subblock_size);


Aneg.set(0.0);


A12 = Aneg - (A11inv* A12 * Binv);


A21 = Aneg - (Binv* A21 * A11inv);


A11 = A12 * B * A21;


//----------assemble A11, A12, A21, A22 into the return matrix

    Matrix temp(subblock_size*2, subblock_size*2);

    AssembleSubmatrices(temp,A11,A12,A21,A22,subblock_size);

    *(pp->mp) = temp;


return TRUE;

}

/*--------------AssembleSubmatrices()--------------------------------*/

void AssembleSubmatrices(Matrix & temp, Matrix & A11, Matrix & A12, Matrix & A21,





  Matrix & A22, int bsize)

{


temp.set(0.0); int myi, myj, i, j;


for (i=0; i < bsize; i++)



for (j = 0; j < bsize; j++)




temp(i,j) = A11(i,j);


myi =0; myj = 0;


for (i=0; i < bsize; i++) {



myj=0;



for (j = bsize; j < bsize+bsize; j++) {




temp(i,j) = A12(myi,myj);




myj++; }



myi++;


}


myi =0; myj = 0;


for (i=bsize; i < bsize+bsize; i++) {



myj=0;



for (j = 0; j < bsize; j++) {




temp(i,j) = A21(myi,myj);




myj++; }



myi++;


}


myi =0; myj = 0;


for (i=bsize; i < bsize+bsize; i++) {



myj=0;



for (j = bsize; j < bsize+bsize; j++) {




temp(i,j) = A22(myi,myj);




myj++;

}



myi++;


}   

}

/*------------Initialize_Matrix()------------------------------------*/

void Initialize_Matrix(Matrix & m1, int bw, int &block_count) {


srand( (unsigned)time( NULL ) );

 
m1.set(0.0);


int i,j;


for (i=0; i < N-((bw-1)/2); i++)



for (j = i; j <= i+((bw-1)/2); j++) {




if (i == j)




    m1(i,j) = rand() % 9 + 5;




else




{





m1(i,j) = rand() % 5 + 1;





m1(j,i) = rand() % 5 + 2;




}



}


for (i = N-((bw-1)/2); i < N; i++)  // initialize last block



for (j = i; j < N; j++) {




if (i == j)




    m1(i,j) = rand() % 9 + 5;




else




{





m1(i,j) = rand() % 5 + 1;





m1(j,i) = rand() % 5 + 2;




}



}


int subblock_size = (bw-1)/2;

    block_count = 0;  // find total number of blocks

    for (i = 0; i < N-subblock_size; i = i + subblock_size)



block_count++;

    mresult = new Matrix * [block_count]; // matrix blocks for step1 computations


for (i = 0; i < block_count; i++)



mresult[i] = new Matrix(subblock_size*2,subblock_size*2);


pThread = new CWinThread * [block_count]; // thread function pointer for each block

}
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