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Abstract

We have designed a methodology and developed a medium-scale soft real-time communication system architecture, which allows a migration from an unsecured, non-scalable, multi-tier legacy client-server system, to a new system, which is able to maintain all existing functionality and at the same time provides full modern web server features. Our paper details a methodology, which can be applied to complex legacy, synchronous, and asynchronous client-server systems to create web-based solutions. We also describe a system we developed which is currently in operation at a large federal government agency.

During the 1990s web-based CGI systems provided dynamic web service to clients. Despite obvious benefits, the shortcomings included poor scalability and responsiveness as well as lack of state awareness, and security [5,10,15]. New solutions are utilizing Java Enterprise software and Web server specific APIs such as iPlanet’s NSAPI or Microsoft ISAPI [1,10,15,16], which demonstrate that web browsers is not the only appropriate client-side software. Recognizing the benefit that the Internet provided, many organizations began allowing non-web based applications to utilize their networks by providing firewall exceptions. However, security issues are forcing these organizations to look for more secure alternatives [7,24]. We solved problems with security by implementing a web-based Hypertext Transfer Protocol (HTTP) Secure Sockets Layer (SSL) communication architecture. 

Keywords: CGI, NSAPI, RPC, HTTP, Firewall, Security, System Reengineering, Java Servlets.

1   Introduction


Client-server systems have been used in the business environment since the 1980s. They were a simple evolution of time-sharing systems. The advantages were clear: separate the logical functions of the two tiers, and reduce the load on the backend, or server [4,10,14,15,18,20,21]. Because each system was a specific solution for a single application, these systems were as different from each other as the any two pre-database file systems of  the 1960s  [5,6].  The freedom of 

design and communication patterns between the client and the server were no longer possible in a web-based implementation. For each new client CGI request, the web server spawned a server process. However, this process was killed after its completion, and any state it may have had in the prior invocation was lost in a subsequent one. If complex, multi-tier client-server applications are to survive in the current web-based model, their migration must be relatively simple, they must preserve free communication patterns using a simple stream communication and their user interface must be full featured and user friendly. Newer technologies exist for server-side processing including Java (servlets and jsp), Microsoft asp, and proprietary APIs which allow a server program to run as a thread within the web server itself (NSAPI or ISAPI) [1,5,10]. Increasingly, Java servlets are used for such applications [2,5,10,12,15], having the scalability of automatic multithreading. On the client-side, Java applets and other portable code modules allow complex GUIs, which support a web-based architecture natively. Such GUI components and Plug-Ins run within a web browser. and are more powerful than HTML forms and support traditional GUI functionality. In addition, because HTTP is a standards-based protocol, it is possible to develop custom solutions for any GUI application using HTTP as the communication mechanism. [11,22]


The elegant, technical solution to client-server system migration into a firewall-secure, scalable web server environment is to rewrite the system from the ground up using a Java Enterprise Solution. While sounding simple, it may be a daunting task. Consider, for example, that the CGI is a front end to a set of tiers, which may have been developed in stages with different development companies (likely with limited documentation). We may have server sub-systems accessing databases using proprietary APIs such as some flavor of RPC. We may have servers, which keep client state information as long as a session exists. Such long-term processes may implement asynchronous communication back to the client by sending socket-based messages to a server running on the client PC. Clearly, such systems would need to be rethought and reengineered to work in a secure, scalable web environment. However, most organizations do not have resources or funding to rewrite very complex client-server
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Figure 1

Original architecture model with RPC access

systems that are already tested, have the required functionality and are already in production. At the same time, security concerns make using existing client-server systems outside an organization’s firewall imprudent [7,8,13,17,24]. A methodology and architecture is required to preserve investments in existing client-server systems while extending their use world-wide. We will document the details of reengineering a so-called OLD client-server system previously deployed at a large federal agency into a secure web-based client-server system.

2   HTTP Pro Architecture


The HTTP Pro Architecture reengineers the communication mechanism of existing client-server systems. Our methodology addresses the flow of information in a secure web-based environment by implementing this architecture. To introduce our system reengineering methodology, we will begin by showing the OLD client-server system architecture. We will define its functionality and its deployment platform. Then we will reveal the methodology which allows the system to be ported to a web environment as a prototype, and finally to its production version which adds performance enhancements, asynchronous communication and SSL security. 

2.1   The OLD Client-Server Architecture


The client-server system was developed to facilitate the financial management of a large federal agency. It was developed originally from 1998 through early 2000. Its architecture is a three-tier model using a proprietary application framework: I-Structure, and a proprietary communication mechanism: Entera RPC. The client GUI is developed in PowerBuilder. The GUI defines the end user’s interface into the system. The client connects to a Transaction Router Server (Transrouter) via an RPC. The Transrouter routes the request to various other functional server subsystems, depending on the request, using an RPC. The Transrouter and the various other servers use the Ocacle OCI protocol to access an Oracle database. The client is also capable of asynchronous communication with the Transrouter. The system architecture is shown in Figure 1.


The Transrouter Server has multiple functions. First it fetches Powerbuilder screens from an Application Repository (AR) database. The client is made up of so many different screens (a high GUI complexity) that to minimize the size of the client the screen configuration information is stored in a remote database. Also, because screens are not stored in the client, which is installed on the users’ PCs, new screens can be added or screens can be modified without installing a new client on the users’ PCs. Second, because the client needs to populate the data screens with actual financial information, the Transrouter server makes a proprietary Entera RPC call to invoke one of the functional servers, which, in turn, makes an OCI request to the business Oracle database for the application data. Third, the Transrouter manages asynchronous client communications. Because the system has many concurrent clients, each requires its own Transrouter running on a listening port. In addition, each client also requires a port for its own asynchrounous communication server. There are many ports, which are necessarily going through the firewall for the system to function correctly. Each port requires a firewall exception and increases security issues. And, each client, if it were also behind a firewall, would also require a firewall exception [13,17,24]. To uniquely identify the client and the particular session a user id, uid, and a session id, sid, are maintained on the client and Transrouter and functional server sides. This situation makes any change to the system difficult. One additional important system problem occurred when some large data requests took an inordinate amount of time. If the client made such a request, the RPC would block the client for a potentially long period of time. To avoid this, the functional server would return immediately and notify the Transrouter that the request would be completed asynchronously. In such cases, the client would open a server thread, which would wait until the functional server was ready to return the data set. The functional server would notify the Transrouter and the Transrouter would notify the client via the clients listening server thread., allowing the client to do other things in its main thread and pick up the asynchronous response when it was ready.

The system architecture was affected when the agency decided it required worldwide access to the application via the Internet. Given the number of firewall exceptions that would be required and the desire to implement a more secure environment a new approach was necessary. The system would be difficult to rewrite because of the huge amount of complicated screens stored in the Oracle database the code-base of over one million lines of C code with several thousand SQL queries. Further, the proprietary RPC-based Functional and Transrouter Servers were a set of well-behaved, complex, expensive and tested components. Redevelopment of the entire system would cost on the order of several million dollars and take 2 ½ years to develop and test.

2.2 The Migration to a CGI model – The Prototype

The Agency implemented two firewalls for its web-based environment. All access from outside the main network must pass through the Service Net firewall. This access would be for all users routed via the Internet. The web servers behind this firewall would then be able to access servers behind the Server Net which further protects all of the application server machines. In this way, if a break-in was detected from the outside world, the first firewall could shut off all external user access, still allowing access to internal clients. Our prototype system would require the following components: (1) a new communication component for the PowerBuilder client utilizing HTTP requests. [3,19,21,22] (2) a web server on the Service Net running a CGI Tunnel program to route requests to a second web server on the Server Net. [4,21], and (3) a web server on the Server Net running a CGI Transrouter Client program which acts as a proxy for the real PowerBuilder client. The motivation for using the CGI model for the prototype was to make the new system architecture as straightforward as possible while, at the same time, demonstrating that a web-based approach would solve the problem. In this way, a solution could be developed relatively quickly at a low cost, while maintaining about 80% of the existing functionality. In our approach, only the communication component of the client was replaced, and there were no modifications to the Transrouter server. This new system design is depicted in Figure 2.

The system presented a number of issues. Our timeframe to complete the prototype was short due to the agency’s implementation timeframe and the failure of another vendor to demonstrate a working prototype using a different approach. The system is also very complex and our goal was to preserve as much as possible of the existing production code base, development tools, development processes and to minimize system testing. Our web-enabled system would look and feel 100% the same as the existing RPC system. Next, our approach would have to run concurrently with the existing production PowerBuilder client, so we could not make any changes to the server side of the application. Our primary problem was how to replace a binary data communication  using  an  RPC with  an  HTTP request in
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Figure 2

New working prototype architecture

PowerBuilder [4,19,20,22]. According to the HTTP protocol only certain standard characters are allowed in a request and certain sequences of characters in a data stream have meaning [22]. How could we ensure that the binary data we passed via HTTP would not be corrupted or misinterpreted? Also, the client stores state data, which must be sent to the Transrouter. Finally, the Transrouter could not “know” the request was not coming directly from the client. Our solution relied on the client sending all of the required state information for the request as well as the request itself in a MIME (Multipurpose Internet Mail Extensions) form data POST request. The binary data was further protected within the MIME message by base64 encoding the data before it is added to the message [23]. This message would then be sent to the Tunnel, which would forward it to the Transrouter Client CGI program. This program would unpackage the data, unencode the binary data and then reconstruct the request into a RPC just like the PowerBuilder client would originally have done. Therefore the Transrouter could not tell the difference between the real client and the proxy CGI Transrouter Client. This prototype allowed clients to access the server system via the web server on the Service Net or directly via the web server on the Server Net if the client was inside the agency’s network. The prototype demonstrated that worldwide access was possible while adhering to a strict firewall policy. The only RPCs left in the system were internal to the same machine. For the prototype, asynchronous client requests and SSL security were not implemented. The prototype also could not scale well due to the complexity of the CGI interface in relationship to the Transrouter server and the requirements of the RPC interface. It was clear from the prototype that, for more than a handful of users, a different approach would be required.

2.3 The Production Implementation

The CGI solution demonstrated quite well that the methodology was sound, and was able to prove data connectivity between the client and servers from outside the agency’s firewall. It had shortcomings, however. First, the process was not scalable. When many clients connected, the server ran multiple copies of the CGI Tunnel on the Service Net and the CGI Transrouter Client on the Server Net. This resulted in a waste of memory and decreased performance. Second, the RPC mechanism used in the system had strict requirements of the client.  The RPC really required a persistent client, but the CGI solution was not persistent. To overcome this problem would be too difficult using the CGI interface. The administration of the system would become onerous as the number of clients grew due to RPC configuration issues.  Also, the RPC library is not thread-safe meaning that a threaded solution for the Transrouter Client would not be possible [4,14,18,19,20].

The solution to the scalability issue was straightforward: multithread the Tunnel and Transrouter Client processes. An obvious solution was to implement both of these as servlets [2,10,15]. We did take this approach in the Tunnel. Due to existing hardware and software requirements, our architectural choices had limitations. The web server on the Service Net, where the Tunnel was deployed was running on an HP-UX 11.0 machine as a Netscape 4.0 Enterprise Server. This platform was capable of running Java servlets. However, the existing production system on the Server Net was running on an HP-UX 10.2 machine. Because the existing system relies on many third party software applications, some of which have not been ported to HP-UX 11.0, we could not expect the new system to be able to run on HP-UX 11.0.  Therefore because HP-UX 11.0 is required to run Netscape Enterprise 4.0, we had to use Netscape Enterprise Server 3.6.,  a version without sufficient support for servlets. We implemented the Transrouter Client in Netscape’s NSAPI, an API which allows programs to run in the process space of the web server [1,5,16]. Figure 3 shows the resulting architecture, which provides for simple system administration, scalability, thread-safety, and persistence of the client.

Our production system architecture would require the following components: (1) a new communication component for the PowerBuilder client utilizing HTTP requests which could issue either unsecured HTTP requests or encrypt the requests using SSL (HTTPS).  The SSL component was implemented using RSA’s B-Safe SSL-C API., (2) a web server on  the Service Net running a Java Servlet Tunnel program to route requests to a second web server on the Server Net, (3) a web server on the Server Net running an NSAPI Session Listener and a Session Manager. [1], (4) a Transrouter Client program which acts as a proxy for the real PowerBuilder client.  This program would be spawned for each client connection and would persist for the duration   of a  client session. [4,21], and (5) a daemon
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Figure 3

Scalable architecture with persistent client

process that spawns the Transrouter Client programs. [20]

The problems of scale and asynchronous communication were resolved by modification of the software architecture. The process on the Server Net was broken into several processes. In the CGI model, the Transrouter Client was a CGI script, which made a request via an RPC call to the Transrouter Server. The RPC mechanisms worked well, and used a proprietary DCE system, Entera.  However, limitations of the RPC implementation required a persistent client, which could store state information within the RPC library.  Because we could not modify this product or even know what information was required to maintain the state, we had to make the Transrouter Client persistent. The Server Net’s CGI process was broken into four components: the session manager, session listener, the daemon client launcher and the Transrouter Client. The first two of these components were NSAPI threads, which shared global structures. But because threads have a similar property to CGI scripts, namely they die and lose their states after they complete, the session listener was a thread, which started on web server launch, and never terminated. [1,16] This allowed the session listener to maintain tables of state information between consecutive new and repeat client connections. The session manager is an ordinary thread. Whenever a client makes a connection, the web server creates a session manager thread for that client request. The session manager thread can read or write the shared data stored in tables in the session listener thread. The last component, the Transrouter Client, is a normal process, spawned by the session manager via the Daemon, which makes the RPC calls on behalf on the real PowerBuilder client to the Transrouter Server. The Transrouter Client is a stand-alone UNIX process. As such, one new process would be required for each new client request. Because a session manager manages only one request and then dies, we needed a way for each new session manager thread instantiated for one client to contact the same Transrouter Client each time. We were able to accomplish this by giving out unique session IDs to the PowerBuilder clients at runtime, logging them in the session listener’s table and associating them with the server socket of the dedicated Transrouter Client.  The PowerBuilder client would send this HTTP Pro session id for each request. 

2.4 Typical System Transactions

There are four typical types of transactions, which the client can initiate. They are a new session request, a subsequent session request, a session termination request, or an asynchronous data retrieval request. In order to enable this in our system, several variables were utilized. Variables were sent from the client in the original request, and variables were sent back to the client from the Transrouter Client response. Some of the variables are used to pass the identity of the end user so as to respond only to queries, which the user has a right to pose. Variables of interest in our system include the user ID, session ID, request TYPE, and asynch ID. There are additional variables, which are used for error checking and validity.

2.4.1 Typical System Scenarios

The following scenarios depict what happens when a client makes a request. We will assume that the PowerBuilder client makes a direct HTTP POST request to the inner Server Net web server or an HTTP POST request to the Tunnel Servlet, which makes the POST request for the client, if a client is outside the Service Net firewall. In the case of a client connecting for the first time, the request TYPE has an agreed-upon special value. The session ID is -1. When the session manager receives the request, it creates a unique session ID value, and logs it with the user ID in the shared table. Then the session manager creates a new Transrouter Client process dedicated to this user’s session. When the Transrouter Client launches, it creates a listener port to which the session manager will connect. Then the Transrouter Client sends a message to the session listener to report its port number, and the session listener records it in the table along with the client’s user and session IDs. The session manager, which has been polling the table for a valid port entry to contact, reads the port number, and opens a socket to the dedicated Transrouter Client. It is at this time that the client’s request is forwarded to the to the Transrouter Client, which in turn, makes the RPC call to the Transrouter Server. In a normal request, one in which the request is not very time consuming, the RPC returns the result of a functional server’s processing, which is returned to the session manager, then returned to the PowerBuilder client. When a client makes a subsequent request, the request TYPE is another well-known value, but the client sends it a previously-received session ID. This differs from an initial request in that the newly created session manager thread does not create a new Transrouter Client process, but looks up the port of the previously created one, and forwards the request to the socket.  The request is then processed the same as the initial request. When a client makes a termination request, the process is a bit more complex. The session manager reads the user ID, session ID and the request TYPE.  It sends a message to the Transrouter Client’s socket, which, in turn, sends a message to the session listener to clear the entries from its table. The Transrouter then returns a successful termination message to the PowerBuilder client via the session manager. Finally, the Transrouter client terminates itself.

2.4.2
Asynchronous Scenario

The most interesting situation occurs when a subsequent request results in an asynchronous request. In such a case, the Transrouter Client makes the RPC call to the Transaction Server, which is notified by the functional server processing the request that the request will not be processed immediately. A message is returned to the PowerBuilder client indicating that an asynchronous request is in process.  This client immediately issues a new request thread, sending the request type variable for asynchronous data retrieval along with the other session data. The session manager blocks and returns only when the special asynch session ID variable is finally returned to the session listener by the Transrouter client.  The Transrouter client forwards this special asynch session ID variable when it receives it from the Transrouter server, which receives it from the functional server that was processing the request originally.  This does not block the client, because it is free to make other threaded requests. Each such request will result in a separate session manager dedicated to one request. So client requests for asynchronous data in fact are re-orchestrated as two independent requests and the need for a special client listening port is eliminated [18]. Now that the client issues a standard HTTP request, it is routed normally through the proxy server on the client’s firewall. In addition, because the request is via HTTP and originates from outside the Service Net, the response containing the asynch session ID will no longer be blocked as it returns via the same socket connection.  In the OLD system, the Transrouter would connect as a client to a server on a user’s PC.

3   The General Methodology


In a traditional client-server model, the client makes socket connections to server processes freely. It is possible, and sometimes desirable, to have the client act as a server to listen for asynchronous responses. In a secure environment, the model breaks down, as often the only accessible communication channel is the HTTP port 80 or more likely 443 using SSL [11,13,22]. The lesson we have learned is a simple but powerful methodology, which can be applied to complex legacy client-server systems. When the model is mapped to a secure, firewall-protected web server environment, such sequences are no longer possible, without anomalous exceptions [7,8,13]. We eliminate the need for all but HTTP/HTTPS firewall exceptions, which are usually acceptable [24].


Server processes are run for client requests, and terminate when the request is satisfied. The problem of state can be resolved by breaking the communication sequences between client and server into consecutive client requests, while maintaining client state information. Our model solves this state information issue by creating a two-tier server-side application. In our system, the session manager and session listener define the web server tier. While the manager manages the current client request, the listener maintains the long-term data structures, such as lookup tables, which allow the future session manager threads to see state changes that would otherwise be impossible in a single-cycle request-response server-side programming model. The second tier, the service tier, in our case the Transrouter Client, was the process that made the system work in a static way, meaning that the Transrouter Client process was a stable, long-lived client, despite the real PowerBuilder client arriving into the web server in session manager thread bursts. 

4   Future Enhancements


The following enhancements will be implemented in 2002: (1) The PowerBuilder client will be able to specify proxy server settings. Currently, the client relies on the default proxy server settings if the client is also behind a firewall.  It is more desirable from a security standpoint to also be able to control proxy server request rather than relying on a proxy server default, (2) the PowerBuilder client will authenticate itself to the web server via a digital certificate.  Currently, we use a proprietary User ID and Password scheme controlled by Oracle. A digital certificate improves the authentication process.

5   Conclusions

We detailed a general methodology, which allows the migration from an unsecured, non-scalable, multi-tier legacy client-server system to a new architecture. The new system preserves all existing functionality while providing full modern web server features. Our approach is not only novel, but also highly cost effective due to its reuse of much of the existing basic code and design. Our paper detailed a systematic approach, which can be applied to complex legacy, synchronous, and asynchronous client-server systems to create modern, scaleable web-based solutions. 
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