JDOP-2: A Platform for Java-Based Distributed Object Processing

Julius Dichter, Gleb Popov, Konstantin Vovk, Ausif Mahmood

University of Bridgeport, Bridgeport CT

dichter@bridgeport.edu
Abstract

In this paper, we describe the Java Distributed Object Platform - JDOP-2 - a scalable distributed memory multiprocessing system. JDOP is a novel distributed architecture, which is client-driven and server-managed. The JDOP paradigm allows clients to submit worker objects to our system, and computation is distributed across the member nodes. The client-defined and dispatched workers may perform their work independently or in synchronization with other workers. The JDOP-2 system provides a transparent communication mechanism so workers can communicate without explicit knowledge of other workers’ location. JDOP-2 has substantially new functionality, new features and a performance improved redesign of the our JDOP-1 system [1]. Its functions comprise the distribution, management, inter-communication and processing of autonomous worker objects. The multi-tier architecture of the system consists of a web-based client interface, a Master Object Server - MOS - and a set of independent Slave Object Servers - SOS. The client interface, accessible through any web browser, is used to send worker jobs and their datasets to the MOS, examine the status of existing jobs, and view results of completed jobs. The Master Object Server receives jobs and datasets from the client, distributes and performs load balancing [4, 6] of workers among Slave Object Servers, and manages worker assignments. The Slave Object Server instantiates worker objects, controls their execution, and provides the means for communication between individual workers. The key feature in JDOP is that it is client-driven. It provides an infrastructure to support any number of jobs from any number of clients, each of which is comprised of any number of worker objects which may communicate with works from their own job set, if needed. Each client job is secure on JDOP, as jobs have no ability to communicate with each other clients’ workers. The client does not need to access pre-registered services as exist in Java RMI, CORBA, or typical naming services [15,18,19]. Instead, the client sends its own object requests to JDOP-2, which manages object distribution, execution, inter-worker communication, and result collection. The JDOP system executes distributed computations as do PVM or MPI [2,3], but clients send object workers and corresponding datasets to our system, and JDOP-2 transparently manages the entire computation process. Distribution transparency and dynamic configuration are desirable qualities in modern middleware systems [5]. This paper describes the architecture of the JDOP-2 system, implementation details of its individual components, message and communication protocols, and standard interface definitions. A demonstration of the system is provided with a JDOP-2 implementation of a parallel matrix multiplication algorithm.

Keywords:
Parallel and Distributed Processing, Distributed Object, Java, PVM, MPI, RMI, CORBA, Multi-Tier Systems.

1. Introduction

JDOP-2 is a system developed to transparently distribute computations consisting of a set of object workers across a large virtual network. The infrastructure for JDOP-2 is a set of coordinated distributed components actively managing many such independent computations, and their corresponding workers. While PVM or MPI systems [2,3] support objects to distribute method executions to achieve distributed processing, JDOP-2 makes its unit of computation and distribution a collection of object workers. Other than the single point of contact to send its object workers and datasets, the client is unaware of the network of machines which support the JDOP-2 system. Our three-tiered architecture is designed to concentrate on the job as its primary focus and on the worker as a basic unit of processing. Such an approach benefits the scalability of the system. It allows for such features as adding machines to the JDOP-2 system and direct inter-communication between workers. The communication is abstracted so that a worker object only needs another object’s worker number to communicate. The actual communication is between the system servers running the worker objects. JDOP-2 provides all worker number mapping and messaging facilities to support communication. All the modules of the system can be installed on any machine which provides a Java Virtual Machine. To pass information, such as data or result sets we use the Oracle 8i DBMS. Given a job, as defined by the JDOP-2 interface definition, the system can scale seamlessly and transparently among dynamically changing quantities of workers, datasets, and JDOP-2 component servers without affecting the job. In fact, the developer of the job is unaware of details of the implementation or physical makeup of our system. The entire computation job consisting of distribution, organization, communication, and result collection is managed by JDOP-2.

All components of JDOP-2 are written in Java. The job and dataset definition files and all necessary operational data are persisted by the Master Object Server and Slave Object Servers into an Oracle 8i database [12]. The web-based client interface is developed as a set of JSP scripts running within the Resin application server environment [7,8]. The XML based data of the client interface is transformed using XSLT [9] for presentation to the user. The message passing system used for communication between all components and for inter-communication between workers is written in Java utilizing the XML-RPC communication protocol [10,11]. An XML-RPC client is embedded in the web-based client interface, which notifies the MOS when a new job has arrived. The MOS acts as both an XML-RPC client and server, receiving notifications from the client interface and distributing jobs between slave servers. The MOS keeps a central registry of all available slave servers and their current loads. Each slave server registers with the MOS on start-up. Each worker running on a given SOS has its own XML-RPC handle with its SOS. A worker can initiate communication to another worker or to the job’s assembler object, which is also running on a specific SOS in the system. Each worker is aware of and has access to the SOS on which it is running. The worker sends a message to another worker by invoking a function of the SOS on which it is running. The SOS determines the location of the message’s recipient and sends the message directly to the recipient worker by invoking the worker’s XML-RPC handle on its SOS [16]. A user-developed job has to conform to the JDOP-2 job definition interface to be processed by the system. The developer of a JDOP-2 job has to derive his classes from these base classes and implement the functionality for splitting the dataset, combining the results of each worker, as well as the logic and steps of the worker’s algorithm. The dataset for the operation of the job is defined by the user in an XML file, along with the number of workers to be created by the Master Object Server.

2. System Architecture

JDOP-2 architecture is based a multi-tier model. The web-based client user interface is the first-tier, providing the user with an entry point to the system. The user interacts with the system exclusively through this client user interface and is unaware of the existence of any other system components. The Master Object Server comprises the middle tier and contains the logic for effectively and transparently distributing the users’ jobs. The MOS uses an Oracle database as a back-end for storing its operational data. The third tier is the Slave Object Server, multiple instances of which are usually present in the system, having the task of executing the users’ worker and assembler objects and reporting the result back to the MOS. JDOP-2 is designed to be a multi-user system with any number of users submitting jobs for processing and multiple slave servers capable of executing any number of distinct jobs

Figure 1

in an efficient distributed manner. An overview of the architecture of the system is provided in Figure 1 above.

2.1 Client User Interface

[image: image6.wmf]

[image: image7.png]interface IDOPASSembler
JDOPDistributor
*numbWorkersint
+505:Basic308
*uid:String
+parisReceivedint

+alistibute:Vector
A

+setiorkerhlessage void
+updateStatus void

Thread

BaseJoBDefmition +hanclieDataEventvoid

slaveServer Basic0S
UID:string
numiorkersint
assemblyResultString

4

+isReceived hoolean
+message:String
+datarString
~orderint

+Hotalint
+505:Basic808

*uid:String
+lastgenderDint

+setDatavoid
+sendyoid sos
+setiorkerhlessage void +BasicS05
+UpdateStatus void

messageReceivedboolean
4

The web-based client user interface consists of a set of a set of JSP scripts, XML data files and XSLT definitions that present the user with a way to utilize and interact with our system. The main entry point of the user interface, the default page, provides the user with a brief description of the system and its capabilities and offers to start the JDOP wizard. This wizard is a set of JSP scripts that enable the user to submit jobs to the system through a simple interface. Each job is assigned a unique 160-bit key, stored in the user’s web browser cookies. Once a job has been submitted, the user is directed to a page containing a Java applet that displays the processing and completion status of the user’s job. At this point, the user can choose to close the browser window containing the client user interface and decide to return to the system at a later time. When the user returns and the submitted job is not yet complete, the page with the status applet showing the latest status will be presented. If the job has been completed at the time of the user’s return, the user is presented with a page that enables the viewing and downloading of the results of the user’s job. [image: image8.wmf]

The system makes use of Resin’s Java Server Pages 1.2 engine for the implementation of the background logic and the Resin-XSL engine for the presentation logic transformations. XML files are read and parsed using the SAX API [13]. The JDOP-2 wizard shown in Fig. 2 can be used to upload the local jar file containing the worker, distributor and assembler classes and the xml file containing the job description and the job’s dataset. After the user submits a job through the wizard the status page shown in the screenshot in Fig. 3 is presented. It provides the user with feedback from the JDOP-2 system about the status of the submitted job.

[image: image1.jpg]2 100P

izard

rosoft Internet Explorer

Fle Edt View Favortes Took Help

=101 x|

Ghack - = - @ [0 | Qewrch (ravorkes Biveds 3B S A H &

‘ddress [&) hi:flacaihost:5090/idop/vizard. jsp

DOP] D e
ome JDOP wizard

oria Dataset Definitian File

Job Classes Archive

Continue | Clear

Browse.

Browse.

Copyrigh (C) by Gleb Popou, Kostyantyn Vosk, and Julius Dichter 2001, 2002

[[BE oolrranet v

[image: image2.jpg]rosoft Internet Explorer =101 x|
Fle Edt View Favortes Took Help

Ghack v > - @ [0 | Qearch [aravortes Biveds 3B S H &

actress [] hitpfocalhost:3030fidop/status.Jsp | @

DOP| D ed Object Platfo bruary 28, 200288

ome JDOP System Status

UID: fo86e4c230026032a5a6787628ab 7600005341

Status:

Processing dats

Copyright (C) by Gleb Popou, Kostyantyn Vosk, and Julius Dichter 2001, 2002

|
P

@] Appiet started T BE ot

Figure 2 (above) and Figure 3 (below)

2.2 Master Object Server

The Master Object Server is a middleware core component of the JDOP-2 system [17]. The main responsibilities of the MOS are the following:

· Reception of job definition and dataset from client user interface

· Splitting of dataset into parts for each worker to be executed

· Registration and keeping track of slave servers in the system and their loads

· Distribution of workers among slave servers in an efficient and balanced manner

· Keeping track of job and worker assignments

· Sending workers classes and their corresponding data parts to slave servers

· Notifying the client on job completion

· Maintaining persistent database of operational information

The MOS is designed as a Java application capable of running in a Java Virtual Machine. It communicates with the client interface and slave servers using the XML-RPC communication protocol [10, 11]. The MOS acts both as an RPC server, exposing methods to the client interface for job submission, as well as an RPC client, invoking methods exposed by slave servers for job distribution. Database operations are conducted using ORAAPI, a custom, specially-developed high-performance JDBC wrapper for Oracle. The console also provides the administrator with status information on the operation of the server, shown in Fig. 4. The administrator can view information about registered Slave Object Servers and the number of jobs and workers assigned to them in the SOS status screen displayed in Fig. 7.

[image: image3.jpg]=lolx|

[50S server's0s2 (192.168.1.100)" has been registered successiuly at [Febri
/508 server's0s1 (192.168.1.100)" has been registered successiuly at [Febr
[Database has been initiaized at [February 28, 2002, 12:44:07 PM]

MOS RPC Server started at [February 28, 2002, 12:44:07 PM]

77z |

Figure 4

2.3 Slave Object Server

The UML diagram in Fig. 6 shows an overview of the interfaces that constitute the job definition. The Slave Object Server is a process manager component that handles the execution of worker objects that are assigned to it by the MOS. Upon startup an SOS

[image: image4.jpg]e Help
(Saiver] Stats] servces |

Active SOS Server

5051 (192.168.1.100)

[sos1 (192.168.1.100)
[sos2 (192.168.1.100)

=loix(

SOS Status:
1P Address 162.158.1.100

Startad: Thu Feb 28 12:45:16 EST 2002
Warker0
Jebzio

Figure 5

registers itself with an MOS and awaits job assignments from the MOS on its XML-RPC server. Once a message assigning one or more workers to the SOS is received, the SOS retrieves the bytecode for the worker class, loads it within its virtual machine, instantiates the worker object and invokes its execution method via the worker definition interface. The assembler is responsible for assembling the results of each worker into a single result set. The SOS provides the means for intercommunication between separate workers. Each worker is a separate XML-RPC server with its handle registered with the SOS to which it has been assigned. Each worker is aware of the SOS under which it is being executed and can invoke a method of the SOS that sends a message to any other worker of the job or the job’s assembler. Upon completion, a worker sends its result to the assembler and is terminated. The assembler is defined by the user, who implements the logic of assembling the data and deciding when a job is complete. When the assembler determines that the job has completed, it notifies its SOS and passes its result to it, which then notifies the MOS and returns the assemblers result.

2.4 Job and Dataset Definitions

A Job in the JDOP-2 system consists of three parts — a distributor, a worker and an assembler. These are three Java classes usually supplied in a jar file [14] by the user. It is the responsibility of the user to

Figure 6

implement a set of necessary functions for the job in the Java programming language. The UML diagram in Fig. 9 shows an overview of the interfaces that constitute the job definition. The distributor is a Java class that implements the JDOPDistributor interface and provides an implementation of the distribute() method, receiving as a string parameter the dataset and the number of workers and returning a vector of dataparts, one for each worker. The distributor class is instantiated by the MOS in its virtual machine and the distribute() method is invoked before workers are assigned to individual slave servers. The worker is a class that is derived from the abstract BaseJobDefinition class which extends the Java Thread class. Thus the starting point of execution of the worker class is the user-overridden run() method. This method is invoked by the SOS upon instantiation of the worker object. The worker is not limited to this one method for the implementation of its logic, any number of additional methods and classes can be defined and called from within the worker class. The worker is aware of the SOS in which it exists via the BasicSOS interface which provides it with the send() method for sending a message to another worker in the job or to the assembler, and the updateStatus() method which notifies the SOS of its status. A worker can determine if a message has arrived for itself by invoking the isReceived() method. Each worker has an integer identifier indicating its order within the job. The assembler is a class that is derived from the JDOPAssembler abstract class and implements the virtual event handler method handleDataEvent(). The assembler is assigned to one of the slave servers in the system by the MOS. The SOS instantiates the assembler and invokes the handleDataEvent() whenever a message for the assembler is received. Communication with an assembler uses the same system as inter-worker communication. When the assembler determines that the job is complete it invokes the SOS method assemblyResult(). The dataset for a job is described within an XML file, an example of which is shown in Fig. 7. In this file the user specifies the number of workers to be instantiated, the entire dataset, as well as the names of the distributor, worker and assembler classes.

3. Conclusion

The JDOP-2 system effectively improves and extends the existing JDOP 1.0 system [1] providing a simple way to create, manage and execute objects over a network architecture. We have also simplified the creation of the client by clear, well-defined interfaces and the removal of all explicit sockets for communication. The system processes multiple job submissions in a multi-user mode, managing dynamic worker and dataset sizes and efficiently distributing object execution among available slave servers. The user interacts with the system through an intuitive web-based interface. JDOP-2 provides considerable freedom in the definition of worker object behavior in an environment where the execution process, system scalability and communication between individual workers are seamlessly managed by the system. The communication element allows JDOP-2 to compute tasks which require message passing.

[image: image5.jpg]<7uml version="1.0" 7>
- <idop>
- <data>
<worker-count>10</worker-count>
<dataset>1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20</dataset>
</data>
- <classes>
<package />
<main>Example</main>
<assembler>Assemblers/assembler>
<distributor>Distributor</distributor>
</classes>
</idop>

Figure 7

4. Future Work

We designed the JDOP-2 system because we felt there existed a real need for client-driven, scalable distributed object support. Our current model is running several test applications we developed for the system. The future goal is to use JDOP-2 as a testbed for some of our own research work, including Genetic Algorithmic distributed solutions for genome string matching, facial recognition redundant parallel recognizers, and others. We foresee as a further improvement the distribution of the MOS, effectively creating multiple MOSs. Each MOS would have a set of its own satellite SOSs, effectively making a set of clusters of distributed processing elements. This would require a communication of the MOSs with the central MOS lookup server as well as a higher level of load balancing.

5. References

[1]
J. Dichter, H. Tang. A. Mahmood, JDOP: A Virtual Machine for Java-Based Distributed Object Processing. ISCA International Conference, Computers and Their Applications, San Francisco, 2002.

[2]
The MPI 2.0 Standard, http://www-unix.mcs.anl.gov/mpi, MPI Forum, University of Tennessee, July 1997.

[3]
PVM 3 User's Guide and Reference Manual, Oak Ridge National Laboratories, 1993.

[4]
S. Kapidakis. Load Balancing Networks. Department of Computer Science, University of Crete, May 1994.
[5]
J. Aguilar et. Al. Task Assignment and Transaction Clustering Heuristics for Distributed Systems. EHEI. 1995

[6]
R. Riedl et Al. Dynamic Adaptive Load Balancing Algorithms for High Performance Transaction Processing and their Evaluation. University of Zurich. August 1996

[7]
Resin Application Server Core. Caucho Technology, Inc. http://www.caucho.com/products/resin/index.xtp
[8]
JavaServer Pages 1.2 Specification. Sun Microsystems, Inc. http://www.jcp.org/aboutJava/communityprocess/final/jsr053/
[9]
Resin XSLT Engine Reference. Caucho Technology, Inc.

http://www.caucho.com/products/resin/ref/xsl.xtp
[10]
D. Winer et Al. XML-RPC Specification. http://www.xmlrpc.com/spec
[11]
Apache XML-RPC 1.0 Apache Software Foundation. December 2001. http://xml.apache.org/xmlrpc/index.html
[12]
Developing Oracle8i Applications with PL/SQL and Java. Oracle Corporation. http://www.oracle.com/database/documents/developing_o8i_apps_with_plsql_and_java_twp.pdf
[13]
D. Megginson et. Al. SAX: Simple API for XML. http://www.saxproject.org/apidoc/overview-summary.html
[14]
JAR file Specification. Sun Microsystems, Inc. http://java.sun.com/j2se/1.3/docs/guide/jar/jar.html
[15]
S. Baker, CORBA Distributed Objects, Addison Wesley, 1997.
[16]
A. Slominski, M. Govindaraju, et al, “Design of an XML based Interoperable RMI System: SoapRMI C++/Java 1.1”, PDPTA 2001 - International Conference on Parallel and Distributed Processing Techniques and Applications, June 2001.

[17]
K. Geihs, “Middleware Challenges Ahead”, IEEE Computer, June 2001.
[18]
The Common Object Request Broker: Architecture and Specification. Object Management Group, OMG, http://www.omg.org, 1995.

[19]
Sun Microsystems, RMI specification,

http://java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/rmiTOC.doc.html, September 2001.

� EMBED Word.Picture.8 ���

PAGE

_1112362773.doc
[image: image1.png]JDOP 1.1 Design

q o | L
%m m“mm £ £

i
i

e

(oracie)

