Parallel Solution of Unstructured Sparse Matrix Equations

on a Network of Workstations Using PVM*

AUSIF MAHMOOD1, GEDIMINAS KERAS1, JULIUS DICHTER1
1Computer Science and Engineering, University of Bridgeport, Bridgeport, CT 06601

ABSTRACT
Parallelization of the unstructured sparse matrix solution is considered to be a challenging problem and previous studies have not yielded any speedup for circuit simulation under a coarse-grain distributed environment. This paper develops a parallel block-partitionable sparse matrix solution algorithm and implements it on a network of workstations using Parallel Virtual Machine (PVM). In our scheme, the sparse matrix is divided into equal size blocks, and different blocks are assigned to workstations according to the fill-in expected such that a good load balance is achieved in parallel execution. The algorithm developed in this work exploits sparsity at the block level as well as within a non-zero block. An efficient mapping scheme to assign different matrix blocks to workstations is developed which maximizes concurrency and minimizes communication between processors. Associated reordering and efficient sparse storage schemes are also developed. The sparse matrix solver is tested on several benchmark matrices. Speedup is obtained for all benchmark matrices tested in this work. It is expected that as the network latency and throughput improve by employing newer technologies such as ATM or gigabit eithernet, the speedup obtained here will correspondingly improve.

KEY WORds

Sparse matrix solution, PVM, parallel circuit simulation, distributed computing, LU decomposition.

1. IntROduction

Sparse matrix solution is encountered in many modelling and simulation problems such as ODE solvers [1], finite element analysis [2] and circuit simulation [3; 4]. These programs often use implicit methods for numerically solving systems of differential equations which transform the problem into a system of nonlinear equations. The non-linear equations are further converted to a system of linear equations by employing a Newton-type process in which the Jacobian of the derivative function determines the structure of the matrices for these linear systems. Since it often occurs that the components of the derivative function only depend on a small number of variables, the system can be considerably sparse, especially for large problems. Hence, significant computation time can be saved by using a sparse matrix solver instead of using a dense solution. Sparse matrix solution is extremely time consuming for large problems and so its parallelization is desirable to improve its execution time. Unsymmetric and unstructured nature of the sparse matrices under consideration makes it very difficult to achieve efficient parallelization [6-8]. This paper develops a parallel sparse matrix solver for use with a detailed circuit simulation program such as SPICE. Although we focus on circuit simulation, the sparse matrix solver developed here is useful for any problem involving direct solution of sparse and unstructured matrices.

2. PREvious work

Quite a few attempts have been made at parallelizing circuit simulation in the last decade [5-13]. Of these, most success has been reported in a theoretical study on systolic arrays [1], while the past work in coarse-grained implementation on a network of workstations using PVM did not produce any speedups [13]. Implementations on general purpose parallel machines have reported some success [6-9]. However, the high cost of general purpose parallel computers makes distributed computing based on an existing network of workstations more popular, despite lower communication performance (bandwidth < 10 Mbits/s and latencies 1-10ms for standard Ethernet). Although in this work we use workstations connected by standard Ethernet, parallelization techniques developed here are scalable to yield better results from the improvements in the network medium.

3. Sparse LU Decomposition Algorithm

Hwang and Cheng [14] have determined the optimal parallelism in the block-partitioned LU decomposition algorithm for a dense matrix. We have modified this algorithm to an efficient sparse form. We have devised a two-level sparse algorithm which exploits sparsity at the block level as well as with in a block. This results in a much nicer exploitation of the sparsity in the matrix with better load balancing, and detection of the fill-in band.

[image: image1.wmf]9

3

9

5

0

5

6

0

0

0

0

2

1

0

0

0

6

2

0

0

0

0

0

0

0

4

0

9

2

5

8

2

8

Our Sparse LU Decomposition algorithm is shown below.

The novelty of our algorithm is based on three techniques: two-level sparse storage scheme, initial reordering scheme, and sparse computations for diagonal blocks. We further describe these techniques below.

4. Sparse Storage SCHEME

We have developed a new storage scheme for our two-level sparse matrix solver. In order to conserve memory, a dynamically allocated storage for nonzero blocks is carried out. A 2-D pointer array is maintained in which a pointer either points to the nonzero block or NULL if the block is zero. This way, a fast access to nonzero blocks can be readily obtained. Implementation is as follows (fig. 2)

1) Divide the Matrix into equal size blocks according to granularity required.

2) Check each block. If it is nonzero, then dynamically allocate block storage for it and connect it to the 2-D pointer array. If the block is zero, the 2-D pointer array is initialized to NULL and no storage for the block is allocated.

The above storage scheme not only conserves memory but provides a very fast access to elements of a nonzero block. Since the block-level sparisty is found to be very high (>90%) for block sizes <= 10x10 for large problems, the memory saving properties of this scheme are very good. Note that the nonzero blocks are stored in noncompact form for fast access during the block-level sparse matrix solution. However, this noncompact form is changed to compact form (Compressed Sparse Row/Column) to utilize sparsity within a block during execution. The scheme described here is also recursive in nature. i.e., the 2-D pointer array can be made to point to a large block which in turn is stored in terms of another pointer array and dynamically allocated smaller nonzero blocks. Such an indirect scheme may be needed in solution of highly sparse very large size matrices.

[image: image2.wmf].

1

a

21

a

31

a

41

a

51

0

1

a

32

a

42

a

52

.

0

1

a

43

a

53

.

.

0

1

a

54

0

.

.

0

1

i

11

i

21

i

31

i

41

i

51

0

i

22

i

32

i

42

i

52

.

0

i

33

i

43

i

53

.

.

0

i

44

i

54

0

.

.

0

i

55

1

0

.

.

0

0

1

0

.

.

.

0

1

0

.

.

.

0

1

0

0

.

.

0

1

5. Reordering To Minimize Fill-in

[image: image3.wmf]i

kt

=

t

1

<

n

k

n

.

a

nt

i

kn

a

kt

To speedup LU decomposition we can skip those computations which result in zero blocks. Fill-in is therefore an important factor in the execution time. Matrix reordering, (relabeling the nodes) can be carried out to reduce the fill-in and execution time. We devised a block-level reordering algorithm based on a modification of the Markowitz’s algorithm. Our algorithm always selects the next pivot to be a diagonal block whose row-column nonzero product is the smallest. The nonzero block count for a row or column is determined from the entire matrix and not just the active submatrix as is usually done in the Markowitz algorithm at the element level. This improved reordering algorithm resulted in reduction of over 50% for some of the benchmarks that we implemented.

6. diagonal block computations

Parallel LU decomposition algorithm contains a sequence of steps. Each step involves calculating L and U inverses of the nth diagonal block (sequential part), then L blocks for nth column and U blocks for nth row (parallel part). Minimizing the time spent in sequential part of each step is crucial in achieving speedup (Amdahl's law). Calculating L and U inverses of the diagonal block involves decomposing the block into L and U parts, and finding the inverse of each.

To LU decompose diagonal block, Sparse Gaussian elimination [14] was used in previous work [13]. We chose to use the block level decomposition algorithm to decompose a single block. We form "stripes" of single elements and perform calculations sequentially. This method exploits sparsity of the block the same way as the Sparse Gaussian Elimination does, and the complexity of the two algorithms is the same, only our approach does not require extra step of conversion because it does not need the input to be in sparse format.

We have also introduced a sparse inverse calculation algorithm for L and U parts of the diagonal block. In the previous work [13], inverse calculation algorithm by Hwang and Cheng was used. This algorithm did not use element level sparsity of the block. Our inverse calculation algorithm exploits the sparsity of the block, decreasing the inverse computation time. The algorithm also produces CSR and CSC representations of L and U inverses of the block at no additional cost, so we again eliminate conversion step.

Let's examine L block inverse first. By definition, AXA-1=I. Consider 5X5 matrix (fig. 3) - calculating i41 is highlighted. For each value of ikt we need to scan a row of a’s, and add antikn to the result. Recall that we already have input matrix L in CSR format. We may thus avoid scanning the full row of a’s and get nonzero a’s directly from the CSR representation. This way algorithm complexity would be determined by the number of nonzero elements rather than by the size of the block.

[image: image4.wmf]i

11

i

21

i

31

i

41

i

51

0

i

22

i

32

i

42

i

52

.

0

i

33

i

43

i

53

.

.

0

i

44

i

54

0

.

.

0

i

55

It is easy to see that

Also, to calculate each ikx, only the values of i’s from the rows above kth are used. Therefore the calculations should be performed from top row down, left to right as follows (Fig. 4):

[image: image5.wmf]0

10

20

30

40

50

60

70

3

5

7

9

11

13

Number of Workstations

Execution Time (Seconds)

Best

Sequential

Algorithm

Parallel

Algorithm

Fig. 1. Order of Calculations for the L Inverse

Similarly, sparse U inverse is calculated for the U component of the diagonal block.

7. Results

We tested several benchark circuits to verify the performance of the algorithm and also examined the effect of various improvements individually, such as block size, reordering, fill-in envelop detection and skipping computations in those blocks which will not get filled-in, load balancing scheme (assignment of matrix blocks to different processors). As an example, the performance results on a PVM implementation for the SIMM1904 (1904x1904) matrix are shown in Figure 5:

Fig. 2. [image: image6.wmf]0

20

40

60

80

100

120

23

25

34

44

65

110

Block Size

Execution Time (sec.)

PREVIOUS WORK

OUR WORK

Speedup for SIMM1904 benchmark matrix for a block size of 100x100
Block size impact on the speed of decomposition is shown in Fig. 6. Optimum block level size is around 100X100. Performance improvement over the previous coarse-grained algorithm [13] is more than twice for certain block sizes.

Fig. 3. [image: image7.wmf]0

10

20

30

40

50

60

70

3

5

7

9

11

13

Number of Workstations

Execution Time (Seconds)

Best

Sequential

Algorithm

Parallel

Algorithm

Overall Algorithm Performance for Different Block Sizes
8. CONCLSIONS

LU decomposition of sparse unsymmetric matrices may be successfully paralellized over the network of LAN-connected workstations.

An algorithm based on Hwang and Cheng [14] LU decomposition algorithm may be used for sparse matrix computations on distributed system. The key elements of making the distributed solution efficient is sparse storage of large matrices, reordering that minimizes fill-in, and optimized computations of the diagonal block.

Significant part of execution time is spent in communication, therefore using newer technologies such as ATM or gigabit eithernet our algorithm should yeld even higher speed-ups.

9. REFERENCES

[1]
De Swart, J. J. B.; Blom, J. G., “Experiences with Sparse Matrix Solvers in Parallel ODE Software,”| Computers & Mathematics with Applications, vol. 31, no. 9, pp. 43-55.

[2]
Kapadia, N.; Lichtenberg, B.; Fortes, J. A. B.; Gray, J. L.; Siegel, H. J.; Webb, K. J., “Parallel Solution of Unstructured Sparse Finite Element Equations,” IEEE Antennas and Propagation Society International Symposium, 1995.

[3]
Jacob K. White, Alberto Sangiovanni-Vincentelli, "Relaxation Techniques for the Simulation of VLSI Circuits," Kluwer Academic Publishers, 1987.

[4]
Nagel, L. W., "SPICE2: A Computer Program to Simulate Semiconductor Circuits," Memo. no. ERL-M520, Electronics Research Laboratory, U.C. Berkeley, May 1975.

[5]
Trotter, J. A., and P. Agrawal, "Circuit Simulation Algorithms on a Distributed Memory Multiprocessor System," Proc. of the ICCAD-90, pp. 438-441, 1990.

[6]
Cox, P., R. Burch, et al., "Direct Circuit Simulation Algorithms for Parallel Processing," IEEE Trans. on CAD of ISCAS, vol. 10, no. 6, June 1991, pp. 714-725.

[7]
Sadayappan, P., and V. Visvanathan, "Circuit Simulation on Shared Memory Multiprocessors," IEEE Trans. on Computers, vol. 37 no. 12, pp. 1634-1642.

[8]
Yang, G. C., "PARASPICE: A Parallel Circuit Simulator for Shared-Memory Multiprocessors," Proc. of the 27th Design Automation Conf., 1990, pp. 400-405.

[9]
Mahmood, A., S. Sparks and W. I. Baker, "Systolic Algorithms for Solving a Sparse System of Linear Equations in Circuit Simulation," Integration: The VLSI journal, vol. 19.1, 1995, pp. 83-107.

[10]
Sadayappan, P., "Efficient Sparse Matrix Factorization for Circuit Simulation on Vector Supercomputers," Proc. of the 26th Design Autom. Conf., 1989, pp. 13-18.

[11]
Vladimirescu, A., and D. O. Pederson, "Circuit Simulation on Vector Processors," Proc. of the IEEE ICCC, 1982, pp. 172-175.

[12]
Greer, B., "Converting SPICE to Vector Code," VLSI Sys Design, vol. VII, Jan. 1986.

[13]
Chilakpati, U., “Parallel SOLVE for SPICE on a Network of Workstations,” M.S. Project Report, Washington State University, 1995.

[14]
Vipin Kumar, A. Grama, A. Gupta, and G. Karypis, “Introduction to Parallel Computing, Design and Analysis of Algorithms,” The Benjamin/Cummings Publishing Company, Inc., 1994.

read_input_matrix(A)		/* read and store matrix in block sparse form */

reorder_markov(A)		/* reorder blocks using modified Markovitz alg. */

For i=1 to B			/* B = total number of blocks in a row or column */

	For k=i+1 to B

		send Ak,i blocks to machines that will calculate Uk,i blocks

		send Ai,k blocks to machines that will calculate Li,k blocks

For i=1 to B			/* B = total number of blocks in a row or column */

	/* sequential step */

	if (i > 1)

		compute A'i,i = Ai,i - Li,1:i-1 X U1:i-1,i	/* multiply stripes */

	compute Li,i and Ui,i from A'i,i			/* LU decompose Ai,i */

	if (i < B)

		compute L-1i,i from Li,i			/* compute L-1i,i in CSR format */

		compute U-1i,i from Ui,i			/* compute U-1i,i in CSC format */

		multicast Li,1:i-1 and L-1i,i to machines computing U blocks

		multicast U1:i-1,i and U-1i,i to machines computing L blocks

		/* on machines computing U blocks */

		For k=i+1 to B

			compute Ui,k from L1:i-1,i, Uk,1:i-1, Ai,k, and L-1i,i

		/* on machines computing L blocks */

		For k=i+1 to B

			compute Lk,i from Lk,1:i-1, Uk,1:i-1, Ak,i, and U-1i,i

		/* sequential step */

		gather L and U results of ith step

Two Level Sparse Partitioned LU Decomposition Algorithm

Original Matrix

(block size 2x2)

Stored as

(partial view)

� EMBED Excel.Sheet.8 ���

9 3 0 0 0 0 0 0 9 5

0 5 0 0 0 0 0 0 6 0

0 0 8 0 0 0 1 2 0 0

0 0 3 4 0 0 0 6 0 0

0 0 0 7 5 1 0 0 0 0

0 0 6 2 0 2 3 2 0 0

2 1 0 0 0 0 6 1 0 0

6 2 0 0 0 0 3 5 0 0

4 0 0 0 0 0 0 0 9 2

5 8 0 0 0 0 0 0 2 8

Storage of a Matrix for Two-Level Sparse Execution

� EMBED Mathcad ���

Calculating L Inverse

� EMBED Mathcad ���

� EMBED Mathcad ���

�EMBED Excel.Sheet.8���

� EMBED Excel.Sheet.8 ���

* This research was funded in part by a grant from the National Science Foundation Center for the Design

 of Analog and Digital Integrated Circuits under grant # CDADIC 92-4.

[image: image8.wmf]i

kt

=

t

1

<

n

k

n

.

a

nt

i

kn

a

kt

[image: image9.wmf]i

11

i

21

i

31

i

41

i

51

0

i

22

i

32

i

42

i

52

.

0

i

33

i

43

i

53

.

.

0

i

44

i

54

0

.

.

0

i

55

[image: image10.wmf]0

20

40

60

80

100

120

23

25

34

44

65

110

Block Size

Execution Time (sec.)

PREVIOUS WORK

OUR WORK

[image: image11.wmf]9

3

9

5

0

5

6

0

0

0

0

2

1

0

0

0

6

2

0

0

0

0

0

0

0

4

0

9

2

5

8

2

8

[image: image12.wmf].

1

a

21

a

31

a

41

a

51

0

1

a

32

a

42

a

52

.

0

1

a

43

a

53

.

.

0

1

a

54

0

.

.

0

1

i

11

i

21

i

31

i

41

i

51

0

i

22

i

32

i

42

i

52

.

0

i

33

i

43

i

53

.

.

0

i

44

i

54

0

.

.

0

i

55

1

0

.

.

0

0

1

0

.

.

.

0

1

0

.

.

.

0

1

0

0

.

.

0

1

_958424830
8 3 337 133 251 72

.MCAD 303010000 1 74 10 0

.CMD FORMAT rd=d ct=10 im=i et=3 zt=15 pr=3 mass length time charge temperature tr=0 vm=0

.CMD SET ORIGIN 0

.CMD SET TOL 0.001000000000000

.CMD SET PRNCOLWIDTH 8

.CMD SET PRNPRECISION 4

.CMD PRINT_SETUP 1.200000 0.718750 1.200000 1.200000 0

.CMD HEADER_FOOTER 1 1 *empty* *empty* *empty* 0 1 *empty* *empty* *empty*

.CMD HEADER_FOOTER_FONT fontID=14 family=Arial points=10 bold=0 italic=0 underline=0

.CMD HEADER_FOOTER_FONT fontID=15 family=Arial points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE_NAME fontID=0 name=Variables

.CMD DEFINE_FONTSTYLE_NAME fontID=1 name=Constants

.CMD DEFINE_FONTSTYLE_NAME fontID=2 name=Text

.CMD DEFINE_FONTSTYLE_NAME fontID=4 name=User^1

.CMD DEFINE_FONTSTYLE_NAME fontID=5 name=User^2

.CMD DEFINE_FONTSTYLE_NAME fontID=6 name=User^3

.CMD DEFINE_FONTSTYLE_NAME fontID=7 name=User^4

.CMD DEFINE_FONTSTYLE_NAME fontID=8 name=User^5

.CMD DEFINE_FONTSTYLE_NAME fontID=9 name=User^6

.CMD DEFINE_FONTSTYLE_NAME fontID=10 name=User^7

.CMD DEFINE_FONTSTYLE fontID=0 family=Times^New^Roman points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=1 family=Times^New^Roman points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=2 family=Arial points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=4 family=Arial points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=5 family=Courier^New points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=6 family=System points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=7 family=Script points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=8 family=Roman points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=9 family=Modern points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=10 family=Times^New^Roman points=10 bold=0 italic=0 underline=0

.CMD UNITS U=1

.CMD DIMENSIONS_ANALYSIS 0 0

.EQN 9 1 4 0

({5,5}��.�.�{0:a}NAME)[(54)��.�.�({0:a}NAME)[(53)�({0:a}NAME)[(43)��.�({0:a}NAME)[(52)�({0:a}NAME)[(42)�({0:a}NAME)[(32)��({0:a}NAME)[(51)�({0:a}NAME)[(41)�({0:a}NAME)[(31)�({0:a}NAME)[(21)�*({5,5}�({0:i}NAME)[(55)��.�{0:i}NAME)[(54

)�({0:i}NAME)[(44)��.�({0:i}NAME)[(53)�({0:i}NAME)[(43)�({0:i}NAME)[(33)��({0:i}NAME)[(52)�({0:i}NAME)[(42)�({0:i}NAME)[(32)�({0:i}NAME)[(22)�{0:i}NAME)[(51)�({0:i}NAME)[(41)�({0:i}NAME)[(31)�({0:i}NAME)[(21)�({0:i}NAME)[(11))�({5,5}��.�.��

1��.�.���.�.���.�.�)�

�������������������������������������

_978726261.xls
Chart1

		3		3

		5		5

		7		7

		9		9

		11		11

		13		13

Best Sequential Algorithm

Parallel Algorithm

Number of Workstations

Execution Time (Seconds)

58

56

58

42

58

35

58

33

58

34

58

34

Sheet1

		Number of Workstations		Best Sequential Algorithm		Parallel Algorithm

		3		58		56

		5		58		42

		7		58		35

		9		58		33

		11		58		34

		13		58		34

Sheet1

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

Best Sequential Algorithm

Parallel Algorithm

Number of Workstations

Execution Time (Seconds)

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		

Sheet3

		

_978732467.xls
Chart1

		23		23

		24		24

		25		25

		33		33

		34		34

		36		36

		44		44

		50		50

		65		65

		100		100

		110		110

		180		180

PREVIOUS WORK

OUR WORK

Block Size

Execution Time (sec.)

44

28

36

26

43

28

29

26

32

22

30

25

34

21

43

21

57

28

45

15

80

27

113

55

Sheet1

		block size		PREVIOUS WORK		OUR WORK

		23		44		28

		24		36		26

		25		43		28

		33		29		26

		34		32		22

		36		30		25

		44		34		21

		50		43		21

		65		57		28

		100		45		15

		110		80		27

		180		113		55

_978723013.xls
Sheet1

		

		9		3												9		5

		0		5												6		0

										0		0		0

		2		1				0				0				0

		6		2				0								0

												0				0

										0		0		0

		4		0												9		2

		5		8												2		8

_958343323
48 158 187 219 63 192

.MCAD 303010000 1 74 23 0

.CMD FORMAT rd=d ct=10 im=i et=3 zt=15 pr=3 mass length time charge temperature tr=0 vm=0

.CMD SET ORIGIN 0

.CMD SET TOL 0.001000000000000

.CMD SET PRNCOLWIDTH 8

.CMD SET PRNPRECISION 4

.CMD PRINT_SETUP 1.200000 -1.000000 1.200000 1.200000 0

.CMD HEADER_FOOTER 1 1 *empty* *empty* *empty* 0 1 *empty* *empty* *empty*

.CMD HEADER_FOOTER_FONT fontID=14 family=Arial points=10 bold=0 italic=0 underline=0

.CMD HEADER_FOOTER_FONT fontID=15 family=Arial points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE_NAME fontID=0 name=Variables

.CMD DEFINE_FONTSTYLE_NAME fontID=1 name=Constants

.CMD DEFINE_FONTSTYLE_NAME fontID=2 name=Text

.CMD DEFINE_FONTSTYLE_NAME fontID=4 name=User^1

.CMD DEFINE_FONTSTYLE_NAME fontID=5 name=User^2

.CMD DEFINE_FONTSTYLE_NAME fontID=6 name=User^3

.CMD DEFINE_FONTSTYLE_NAME fontID=7 name=User^4

.CMD DEFINE_FONTSTYLE_NAME fontID=8 name=User^5

.CMD DEFINE_FONTSTYLE_NAME fontID=9 name=User^6

.CMD DEFINE_FONTSTYLE_NAME fontID=10 name=User^7

.CMD DEFINE_FONTSTYLE fontID=0 family=Times^New^Roman points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=1 family=Times^New^Roman points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=2 family=Arial points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=4 family=Arial points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=5 family=Courier^New points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=6 family=System points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=7 family=Script points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=8 family=Roman points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=9 family=Modern points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=10 family=Times^New^Roman points=10 bold=0 italic=0 underline=0

.CMD UNITS U=1

.CMD DIMENSIONS_ANALYSIS 0 0

.EQN 9 1 4 0

({5,5}��.�.�{0:a}NAME)[(54)�鯻n_u_l_l_�.�({0:a}NAME)[(53)�({0:a}NAME)[(43)��.�({0:a}NAME)[(52)�({0:a}NAME)[(42)�({0:a}NAME)[(32)��({0:a}NAME)[(51)�({0:a}NAME)[(41)�({0:a}NAME)[(31)�({0:a}NAME)[(21)�(1)[(_n_u_l_l_))*({5,5}�({0:i}NAME)[(55)�
�.�.�{0:i}NAME)[(54)�({0:i}NAME)[(44)�n_u_l_l_�.�({0:i}NAME)[(53)�({0:i}NAME)[(43)�({0:i}NAME)[(33)��({0:i}NAME)[(52)�({0:i}NAME)[(42)�({0:i}NAME)[(32)�({0:i}NAME)[(22)�{0:i}NAME)[(51)�({0:i}NAME)[(41)�({0:i}NAME)[(31)�({0:i}NAME)[(21)�(

{0:i}NAME)[(11))�({5,5}�(1)[(_n_u_l_l_)��.��(1)[(_n_u_l_l_)�n_u_l_l_�.�.�1)[(_n_u_l_l_)��.鯻n_u_l_l_�1)[(_n_u_l_l_)��.�.�1)[(_n_u_l_l_))�

.EQN 15 5 19 0

({0:i}NAME)[({0:kt}NAME)�(({0:t}NAME+1,{0:n}NAME<{0:k}NAME,{0:n}NAME,({0:a}NAME)[({0:nt}NAME)*({0:i}NAME)[({0:kn}NAME)){64}�)-({0:a}NAME)[({0:kt}NAME)�

�����?L�

_958424726
32 243 148 373 89 312

.MCAD 303010000 1 74 28 0

.CMD FORMAT rd=d ct=10 im=i et=3 zt=15 pr=3 mass length time charge temperature tr=0 vm=0

.CMD SET ORIGIN 0

.CMD SET TOL 0.001000000000000

.CMD SET PRNCOLWIDTH 8

.CMD SET PRNPRECISION 4

.CMD PRINT_SETUP 1.200000 0.718750 1.200000 1.200000 0

.CMD HEADER_FOOTER 1 1 *empty* *empty* *empty* 0 1 *empty* *empty* *empty*

.CMD HEADER_FOOTER_FONT fontID=14 family=Arial points=10 bold=0 italic=0 underline=0

.CMD HEADER_FOOTER_FONT fontID=15 family=Arial points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE_NAME fontID=0 name=Variables

.CMD DEFINE_FONTSTYLE_NAME fontID=1 name=Constants

.CMD DEFINE_FONTSTYLE_NAME fontID=2 name=Text

.CMD DEFINE_FONTSTYLE_NAME fontID=4 name=User^1

.CMD DEFINE_FONTSTYLE_NAME fontID=5 name=User^2

.CMD DEFINE_FONTSTYLE_NAME fontID=6 name=User^3

.CMD DEFINE_FONTSTYLE_NAME fontID=7 name=User^4

.CMD DEFINE_FONTSTYLE_NAME fontID=8 name=User^5

.CMD DEFINE_FONTSTYLE_NAME fontID=9 name=User^6

.CMD DEFINE_FONTSTYLE_NAME fontID=10 name=User^7

.CMD DEFINE_FONTSTYLE fontID=0 family=Times^New^Roman points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=1 family=Times^New^Roman points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=2 family=Arial points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=4 family=Arial points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=5 family=Courier^New points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=6 family=System points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=7 family=Script points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=8 family=Roman points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=9 family=Modern points=10 bold=0 italic=0 underline=0

.CMD DEFINE_FONTSTYLE fontID=10 family=Times^New^Roman points=10 bold=0 italic=0 underline=0

.CMD UNITS U=1

.CMD DIMENSIONS_ANALYSIS 0 0

.EQN 9 1 4 0

({5,5}��.�.�{0:a}NAME)[(54)�鯻n_u_l_l_�.�({0:a}NAME)[(53)�({0:a}NAME)[(43)��.�({0:a}NAME)[(52)�({0:a}NAME)[(42)�({0:a}NAME)[(32)��({0:a}NAME)[(51)�({0:a}NAME)[(41)�({0:a}NAME)[(31)�({0:a}NAME)[(21)�(1)[(_n_u_l_l_))*({5,5}�({0:i}NAME)[(55)�
�.�.�{0:i}NAME)[(54)�({0:i}NAME)[(44)�n_u_l_l_�.�({0:i}NAME)[(53)�({0:i}NAME)[(43)�({0:i}NAME)[(33)��({0:i}NAME)[(52)�({0:i}NAME)[(42)�({0:i}NAME)[(32)�({0:i}NAME)[(22)�{0:i}NAME)[(51)�({0:i}NAME)[(41)�({0:i}NAME)[(31)�({0:i}NAME)[(21)�(

{0:i}NAME)[(11))�({5,5}�(1)[(_n_u_l_l_)��.��(1)[(_n_u_l_l_)�n_u_l_l_�.�.�1)[(_n_u_l_l_)��.鯻n_u_l_l_�1)[(_n_u_l_l_)��.�.�1)[(_n_u_l_l_))�

.EQN 15 5 19 0

({0:i}NAME)[({0:kt}NAME)�(({0:t}NAME+1,{0:n}NAME<{0:k}NAME,{0:n}NAME,({0:a}NAME)[({0:nt}NAME)*({0:i}NAME)[({0:kn}NAME)-({0:a}NAME)[({0:kt}NAME)){64}�)�

.EQN 15 -2 28 0

({5,5}�({0:i}NAME)[(55)��.�{0:i}NAME)[(54)�({0:i}NAME)[(44)��.�({0:i}NAME)[(53)�({0:i}NAME)[(43)�({0:i}NAME)[(33)��({0:i}NAME)[(52)�({0:i}NAME)[(42)�({0:i}NAME)[(32)�({0:i}NAME)[(22)�{0:i}NAME)[(51)�({0:i}NAME)[(41)�({0:i}NAME)[(31)�(

{0:i}NAME)[(21)�({0:i}NAME)[(11))�

.EQN 19 0 25 0

({5,5}��.�.�{0:a}NAME)[(54)�鯻n_u_l_l_�.�({0:a}NAME)[(53)�({0:a}NAME)[(43)��.�({0:a}NAME)[(52)�({0:a}NAME)[(42)�({0:a}NAME)[(32)��({0:a}NAME)[(51)�({0:a}NAME)[(41)�({0:a}NAME)[(31)�({0:a}NAME)[(21)�(1)[(_n_u_l_l_))*({5,5}�({0:i}NAME)[(55)�
�.�.�{0:i}NAME)[(54)�({0:i}NAME)[(44)�n_u_l_l_�.�({0:i}NAME)[(53)�({0:i}NAME)[(43)�({0:i}NAME)[(33)��({0:i}NAME)[(52)�({0:i}NAME)[(42)�({0:i}NAME)[(32)�({0:i}NAME)[(22)�{0:i}NAME)[(51)�({0:i}NAME)[(41)�({0:i}NAME)[(31)�({0:i}NAME)[(21)�(

{0:i}NAME)[(11))�({5,5}�(1)[(_n_u_l_l_)��.��(1)[(_n_u_l_l_)�n_u_l_l_�.�.�1)[(_n_u_l_l_)��.鯻n_u_l_l_�1)[(_n_u_l_l_)��.�.�1)[(_n_u_l_l_))�

��������������������������������������

