CS 450







           SQL Handout

J. Dichter







               Spring 1999

SQL data sublanguage

· Why is it a sublanguage?

· Oracle makes it a complete language by extensions and embedding

· Allows both DDL and DML on various ANSI/Sparc levels

Data Definition

Relation is a Table

Tuple is a Row

Attribute is a column

CREATE TABLE EMPLOYEE 

(FNAME
VARCHAR(20)
NOT NULL,

 MINT

CHAR(1),

 LNAME 
VARCHAR(20)
NOT NULL,

 SSN

CHAR(9)

NOT NULL,

 BDATE
DATE,

ADDRESS
VARCHAR(30),


 SEX

CHAR(1),


 SALARY
INTEGER,


 SUPERSSN
CHAR(9),


 DNO

INTEGER,


 PRIMARY KEY ( SSN),


 FOREIGN KEY (DNO) REFERENCES DEPARTMENT






ON DELETE CASCADE






ON UPDATE SET DEFAULT,


 CHECK (DNO > 0) );

Deleting a Table

DROP TABLE CONTACTS;

Altering a Table

ALTER TABLE STUDENTS ADD MAJ_CODE CHAR(4) DEFAULT = ‘NONE’;

Domains can CREATEd, ALTERed, and DROPped

CREATE DOMAIN COLOR CHAR(10) DEFAULT ‘RED’


CONSTRAINT GOOD_COLORS


CHECK ( VALUE IN (‘BLUE’, ‘RED’, ‘ORANGE’));

Deleting a Domain

DROP DOMAIN

Altering a Domain

ALTER DOMAIN COLOR CHAR(10) DEFAULT ‘GREEN’


CONSTRAINT GOOD_COLORS


CHECK ( VALUE IN (‘BLUE’, ‘GREEN’, ‘RED’, ‘ORANGE’));

Posing Queries in SQL

Basic Queries fall into the form:



SELECT <attribute list>



FROM
   <table list>



WHERE <condition>

SELECT
BDATE ADDRESS



FROM EMPLOYEE



WHERE FNAME=’John’ AND MINT=’B’ AND LNAME=’SMITH’;

· satisfies the projection of a selection in relational algebra, except that we may get duplicate rows. These are not allowed in Relations

SELECT
FNAME, LNAME, ADDRESS



FROM EMPLOYEE, DEPARTMENT



WHERE DNAME=’Research’ AND DNUMBER=DNO

· a join condition is specified

· columns in the where clause are unambiguous

SELECT
PNUMBER, DNUM, LNAME, ADDRESS, BDATE



FROM PROJECT, DEPARTMENT, EMPLOYEE


WHERE DNUM=DNUMBER AND MGRSSN=SSN

      AND PLOCATION=’Stafford’;

We can distinguish non-unique attribute names by complete names and Table aliases
SELECT
FNAME, EMPLOYEE.NAME, ADDRESS



FROM EMPLOYEE, DEPARTMENT



WHERE DEPARTMENT.NAME=’Research’ AND 




   DEPARTMENT.DNUMBER=EMPLOYEE.DNO;

select
e.fname, e.lname, s.fname, s.lname



from employee e s



where e.superssn=s.ssn;

· E and S are aliases for the Table Employee

· Lists all Employees and their superiors

SELECT
E.FNAME, E.NAME, E.ADDRESS



FROM EMPLOYEE E, DEPARTMENT D



WHERE D.NAME=’Research’ AND D.NUMBER=E.DNO;

· same query as one prior to the last

Using wildcards for attributes and conditions

· No WHERE clause implies a true condition for any tuple

· An attribute * implies all possible columns

SELECT
SSN



FROM EMPLOYEE;

SELECT
SSN, DNAME



FROM EMPLOYEE, DEPARTMENT;

· The last query specifies a Cartisian product of the named Tables

· Prior query specifies all rows

SELECT
*



FROM EMPLOYEE



WHERE DNO = 3;

SELECT
*



FROM EMPLOYEE, DEPARTMENT



WHERE UPPER(DNAME)=’RESEARCH’ AND DNO=DNUMBER;

SELECT
*



FROM EMPLOYEE, DEPARTMENT;

· 1ST query all info on employees in department 3

· 2nd query all info from employees in the research department

· 3rd query Cartesian product of the relations

Treating Tables as Sets not multisets

SELECT
SALARY



FROM EMPLOYEE;

SELECT
DISTINCT SALARY



FROM EMPLOYEE;

Some SQL versions support Union operations such as INTERSECT, UNION, MINUS

SELECT
PNUMBER



FROM PROJECT, DEPARTMENT, EMPLOYEE



WHERE DNUM=DNUMBER AND MGRSSN=SSN




   AND LNAME=’Smith’

UNION

SELECT
PNUMBER



FROM PROJECT, WORKS_ON, EMPLOYEE



WHERE PNUMBER=PNO AND ESSN=SSN AND LNAME=’Smith’;

· The query takes the union of Smith as a manager and worker and reports the project numbers. Multiple Smiths would mean matches might occur on different persons

Nested Queries and Binding Attributes

SELECT
DISTINCT PNAME



FROM PROJECT



WHERE PNUMBER    IN
 (SELECT
PNUMBER







  FROM PROJECT, DEPARTMENT,








  EMPLOYEE







  WHERE DNUM=DNUMBER AND








     MGRSSN=SSN AND








     LNAME=’Smith’






  OR




  PNUMBER     IN 
(SELECT
PNO







  FROM WORKS_ON, EMPLOYEE







  WHERE ESSN=SSN AND

 LNAME=’Smith’);

· The query is similar as prior one, but uses nested select

· Any unqualified attribute referenced in an inner query is qualified by the inner Table. Any unqualified PROJECT attribute in an inner query refers to PROJECT within the FROM clause. Accessing the PROJECT from the outer FROM clause requires aliasing it

· In short we fix each PROJECT tuple, in turn, in the outer query and execute the inner queries on those bound attributes

SELECT  E.FNAME, E.LNAME


    FROM EMPLOYEE E


    WHERE E.SSN IN


    (SELECT ESSN


     FROM DEPENDENT


     WHERE ESSN=E.SSN AND E.FNAME=DEPENDENT_NAME AND


      SEX=E.SEX);

· Selects employees who have a dependent with the same name and of the same sex

· ESSN=E.SSN disallows matching other employees dependents

SELECT
E.FNAME, E.LNAME



FROM EMPLOYEE E, DEPENDENT D



WHERE E.SSN=D.ESSN AND E.SEX=D.SEX AND




   E.FNAME=D.DEPENDENT_NAME;

· The same query expressed without nesting. It is more readable

Checking for an existence of a tuple

SELECT
E.FNAME, E.LNAME



FROM EMPLOYEE E



WHERE [NOT] EXISTS 

(SELECT * FROM DEPENDENT





 WHERE E.SSN=ESSN AND SEX=E.SEX AND

                E.FNAME=DEPENDENT_NAME;

· another version of the same query, using EXISTS

SELECT
FNAME, LNAME



FROM EMPLOYEE



WHERE NOT EXISTS (SELECT * FROM DEPENDENT






                      WHERE SSN=ESSN);

· Names of employees with no dependents

SELECT
FNAME, LNAME



FROM EMPLOYEE



WHERE EXSISTS (SELECT * FROM DEPENDENT 

WHERE SSN = ESSN)


AND


              EXISTS (SELECT * FROM DEPARTMENT



      WHERE SSN=MGRSSN);

· Ok, what is the result?

Explicit Sets and NULLs

SELECT 
DISTINCT ESSN


FROM WORKS_ON


WHERE PNO IN (3,4,5);

SELECT
FNAME, LNAME


FROM EMPLOYEE


WHERE SUPERSSN IS NULL;

· List employees with NO superior

Summary functions and Grouping

SELECT
SUM(SALARY), MAX(SALARY), MIN(SALARY), AVG(SALARY)


FROM EMPLOYEE;

SELECT 
AVG(SALARY)


FROM EMPLOYEE, DEPARTMENT


WHERE DNO=DNUMBER AND DNAME=’Research’;

SELECT
COUNT(*)


FROM EMPLOYEE, DEPARTMENT


WHERE DNO=DNUMBER AND DNAME=’Research’;

· COUNT(*) returns the number of tuples

SELECT
COUNT(DISTINCT SALARY)


FROM EMPLOYEE;

*  We get the number of distinct salary values (without distinct, it is same as COUNT(*))

SELECT
LNAME, FNAME


FROM EMPLOYEE


WHERE (SELECT COUNT(*) FROM DEPENDENT





   WHERE SSN=ESSN) >= 2;

SELECT
DNO, COUNT(*), AVG(SALARY)


FROM EMPLOYEE


GROUP BY DNO;

*  The select clause includes the grouping attribute once, with the summary functions

SELECT
PNUMBER, PNAME, COUNT(*)


FROM PROJECT, WORKS_ON


WHERE PNUMBER=PNO


GROUP BY PNUMBER, PNAME


HAVING COUNT(*) >= 2;

· List project number and name as well as the number of employees for projects with at least two employees

· HAVING is allowed to qualify GROUP BY only

Substrings, Arithmetic, and Ordering Query Results

SELECT
FNAME, LNAME


FROM EMPLOYEE


WHERE ADDRESS LIKE ‘%CT%’;

· Finds addresses with CT anywhere

SELECT
DNUMBER, DNAME, SUM(SALARY*1.1)


FROM EMPLOYEE, DNUMBER


WHERE DNO=DNUMBER


GROUP BY DNUMBER, DNAME


ORDER BY DNAME;

· Show the total salary of employees in each department along with the number and name of each department, ordering by the department name (alphabetic)

Summary of the SQL Queries



SELECT
[<attribute list>]



FROM
[<table list>]



WHERE
[<condition>]



GROUP BY
[<grouping attribute(s)>]



HAVING
[<group condition>]



ORDER BY
[<attribute list>]

Update Statements

INSERT 
INTO EMPLOYEE


VALUES (‘xxx…xxx’, ‘xxx…xxx’, 99999,  … , 9999);

· Places a new tuple into the table

· All attributes must be included

INSERT
INTO EMPLOYEE (FNAME, LNAME, SSN)


VALUES (‘James’,’Dean’,121234444);

· Specifies only selected attributes, but all NOT NULL must be provided

Multiple INSERTs can be accomplished

CREATE
TABLE DEPT_INFO (DNAME VARCHAR(15),





   NO_EMPS INTEGER,





   TOT_SAL INTEGER





…
);

INSERT INTO DEPT_INFO (DNAME, NO_EMPS, TOT_SAL)


SELECT DNAME, COUNT(*), SUM(SALARY)


FROM DEPARTMENT, EMPLOYEE


WHERE DNUMBER=DNO


GROUP BY DNAME;

· Create a new Table, and fill it with some summary information

DELETE
FROM EMPLOYEE


WHERE LNAME=’Smith’;

DELETE
FROM EMPLOYEE


WHERE DNO IN


(SELECT DNUMBER FROM DEPARTMENT


  WHERE DNAME=’Research’;

· Delete all Research employees

DELETE  FROM EMPLOYEE

· Remove all employees

UPDATE
EMPLOYEE


SET SALARY = SALARY * 1.25


WHERE DNO IN (SELECT DNUMBER FROM DEPARTMENT





WHERE DNAME=’Research’);

· If DNO matches the projected DNUMBER, increase SALARY by 25%

SQL Views

CREATE
VIEW WORKS_ON2  AS


SELECT FNAME, LNAME, PNAME, HOURS


FROM EMPLOYEE, PROJECT, WORKS_ON


WHERE SSN=ESSN AND PNO=PNUMBER;

· WORKS_ON2 has the attributes named same as the base tables

CREATE
VIEW  DEPT_INFO (ATT1, ATT2, ATT3) AS


SELECT DNAME, COUNT(*), SUM(SALARY)


FROM DEPARTMENT, EMPLOYEE


WHERE DNUMBER=DNO


GROUP BY DNAME;

SELECT
ATT1, ATT2


FROM DEPT_INFO


WHERE ATT2 < 10;

DROP VIEW DEPT_INFO;

Internal Level

CREATE
INDEX LNAME_IDX


ON EMPLOYEE(LNAME);

CREATE
INDEX NAMES_IDX


ON EMPLOYEE (LNAME ASC, FNAME DESC, MINT);

CREATE 
UNIQUE INDEX SSN_IDX


ON EMPLOYEE(SSN);

· 1st index is simple index on EMPLOYEE.LNAME

· 2nd index in on last, first, middle initial. Note the ASC or DESC for ascending, descending order

· 3rd index specifies that SSN is a primary key on EMPLOYEE Table

CREATE
INDEX DNO_IDX


ON EMPLOYEE(DNO)


CLUSTER;

· Cluster specifies that tuples with same department number should be in adjacent locations

CREATE
UNIQUE INDEX SSNO_IDX


ON EMLOYEE(SSN)


CLUSTER;

· Creating a primary index

· Index itself may be an inverted file, a pointer chain, a B+ Tree, etc (more on that later)

ORACLE® Includes a Complete Language PL/SQL

· SQL is non-procedural
· PL/SQL is structured and procedural
· Includes


datatypes


variables


subroutines


modules


procedural constructs

· Blocks of PL/SQL  consist of


anonymous blocks


procedures


functions

· Blocks can be combined into modules called packages
· Procedures can be stored in the database to enable application sharing

· PL/SQL is proprietary BUT portable across all ORACLE platforms

· SQL executes one statement at a time over the network

· PL/SQL allows blocks to be transferred more efficiently

· Embedded SQL on Pro*C system does not support all the ORACLE datatypes

· Pro*C uses a statement at a time SQL execution from within C/C++ code

· PL/SQL packages are stored in memory for subsequent calls to any module components

PL/SQL overview

· Connection to Database

· PL/SQL variables and constants

· Embedded SQL

· Transactions

· Error processing

Outline of PL/SQL procedure

· CONNECT to the database

· Declare variables and constants

· BEGIN procedure

· 
Process SQL statements

· 
Process procedural statements

· 
COMMIT transaction

· 
Process errors (ROLLBACK)

· END procedure

Procedure Example

PROCEDURE  abc (<identifier> IN  INTEGER, <identifier> OUT INTEGER) IS

initial CHAR;

error1 EXCEPTION;

error2 EXCEPTION;

…

…

BEGIN

     SELECT  <Table>.<Column> INTO <identifier>  FROM <Table List>



                                     WHERE <condition>

     IF <identifier> = ‘M’ THEN

          SELECT … … … … INTO … … … …  FROM <Table List>




                  WHERE <condition>

     END IF;  -- this is a comment

IF <condition>  THEN

  RAISE  error1;

END IF;

EXCEPTION

  WHEN error1 THEN

-- handle the user exception

WHEN  OTHERS  THEN

  ROLLBACK;

END abc;

Setting Constraints


CREATE TABLE DEPT

(DEPTNO NUMBER, DNAME VARCHAR2(9),

 LOC VARCHAR2(10),

 CONSTRAINT UNIQ_LOC UNIQUE  (DNAME, LOC) … )

· Above, we define DNAME and LOC as a unique key, not necessarily a primary key.

· A unique index is created to manage the unique constraint

· This is NOT a primary key!

[CONSTRAINT <CONSTRAINT NAME>] PRIMARY KEY (<COLUMN LIST>)

· This IS a primary key

· Example Foreign Key

CONSTRAINT FK FOREIGN KEY (DEPTNO)

REFERENCES DEPT(DEPTNO) [ON DELETE CASCADE]

· The optional ON DELETE CASCADE will delete employees in a department which is being deleted

Name of the Constraint








PAGE  
15

