PAGE
50

· Java JDBC® : Java Database Connectivity

JDBC - It is not officially an acronym for anything, but ODBC® stands for Open Database Connectivity so the implication is clear. Sun Microsystems® provides a JDBC-ODBC bridge for Windows and Solaris to enable Database access to many Relational Database Systems.

JDBC is a Java API which gives an ability to talk from a Java applications and Applets to any Database which for which a JDBC driver exists.

JDBC provides a single interface which allows programmers to write-once-run-anywhere SQL queries to most Database systems

Included systems are: Oracle®, DB2®, Sybase®, MS Access®, Informix® etc. etc …

JDBC is an application program interface (API). The API provides a standardized way to communicate to databases from different vendors as long as the vendor supports SQL and a driver exists which can communicate the JDBC API calls to the database system DBMS.

JDBC supports the SQL query language, and provides accessibility for Java programs to have embedded (in-line) code to access a Database System. This gives the client program the power of the Relational Database DBMS combined with an OOPL as well as Java’s platform independence and Web friendliness.

SQL Basics

SQL is the Standard Query language. it is a very high-level language which allows users or applications to communicate to the database DBMS, Database Management System.

There is an SQL standard which many vendors support. However, many of them allows certain variations to the SQL standard. Some may allow a subset of SQL, while others may allow a superset, meaning more than the standards defines.

Allowing more than the standard is a proprietary approach which makes portability less possible.

Some vendors modify the SQL and support it with their own dialect. Such is the case with MS Access®, for example. All basic queries are available, but the syntax needs to conform to the MS version.

Basic Four SQL commands:

Select

- a way to retrieve data in a database

Insert

- a way to add data into a table

Update
- modifies one or more rows in the table

Delete

- removes rows from a table

· Other Important SQL Commands

In addition to manipulating data in Tables, we can also issue commands which define, change the Table structure, as well as security rules which define how users may particular Tables and other Database resources.

Important SQL commands:

Create

- This is used to add a brand new entity into a Relational Database. The

 entities are Tables, Views, and Indexes.

Alter

- This command allows the Tables, etc., to be modified with respect to

 structure. Fields can be added, removed, and changed with respect to

 name or type.
Drop

- This allows to remove a Table or View from the Database.

Grant

- Allows the assignment of access rights to users, classes of users, and

 roles in a Database system

Revoke
- Similar to GRANT, but the right are taken away

SQL Basics

An Example of Two Relational Database Tables

The Employee Table

ELname
EFname
Age
Telno
SS
Hobby

Barnes
Amanda
32
333-1111
444558888
Hiking

Sherman
Tom
41
234-1243
333113333

Thomas
George
26
455-1122
121779090
Ping Pong*

Vandeley
Sally
31
510-4522
678114444

The Child Table

CName
Age
Sex
SS

Adam
12
M
333113333

Bert
7
M
678114444

Charles
8
M
444558888

Edward
11
M
678114444

Jody
16
F
121779090

Samantha
13
F
678114444

Victor
4
M
333113333

Each table can be queried as its own entity as well as queried by cross-referencing the tables by common-valued fields. The Employee Table SS field is related to the SS field of the Child Table.

* aka table tennis in some circles

· SQL Basics (SQL queries)
Examples of SQL code:

[image: image1.png]
SELECT ELname Age

FROM Employee

Where Age > 31 ;

ELname
Age

Barnes

32

Sherman
41

[image: image2.png]
SELECT ELname SS

FROM Employee

Where ELname LIKE ‘%ma%’ ;

Elname

SS

Sherman
333113333

Thomas
121779090

[image: image3.png]
SELECT *

FROM Child

WHERE AGE = 12 ;

CName

Age

Sex

SS

Adam

 12

 M

333113333

· SQL Basics (SQL queries)

SELECT EFname, Hobby

FROM Employee

WHERE Hobby IS NOT NULL ;

EFname

Hobby

Amanda

Hiking

George

Ping Pong

SELECT EFname

FROM Employee

WHERE Hobby IS NULL ;

EFname

Tom

Sally

SELECT Employee.EFname, Employee.Hobby

FROM Employee ;

EFname
Hobby

Amanda
Hiking

Tom

NULL

George

Ping Pong

Sally

NULL

· SQL Queries Across Multiple Tables

Referencing two tables requires keys: the primary key and a foreign key.

Rules:

(A primary key may not be NULL, and must be unique in its Table

(A common field relates two Tables

(When a query draws data from two Tables, we say that the tables have been joined

(A join connects the primary key in the first Table to the foreign key in the second Table

Consider the following query:

SELECT EFname, CName, Child.Age

FROM Employee, Child

WHERE Employee.SS = Child.SS ;

The Employee.SS is the primary key in the Employee Table which references the Child.SS, the foreign key in the Child Table.

Note that the Child.SS is not a primary key in the Child Table.

EFname
CName
Age

Amanda
Charles
 8

Tom

Adam

 12

Tom

Victor

 4

George

Jody

 16

…

…

· SQL Provides both DML and DDL statements
DML
- Data manipulation language. There are commands that modify the state of existing Tables.

These include: SELECT, UPDATE, INSERT, and DELETE

DDL
- Data Definition Language. These are commands which create, destroy, and modify Tables (or other Database relations, such as VIEWs, SNAPSHOTs)

These include: CREATE, DROP, and ALTER

Typically, the DDL statements are used less frequently than DML statements because Tables are CREATEd once, rarely modified or DROPped. Once a Table exists in an operational Database, the contents of the data is changing dynamically as transactions process the Database. Those changes are usually done through DML statements.

· Examples of SQL DDL Code

To create a Table in a Database we use the CREATE DDL command. For example, we can define a new Table, called Employee using the following DDL code.

The following code, uses the SQL syntax to create a new Table named, SampleTable which has three fields, Name, Age, and Salary.

CREATE Table SampleTable

(Name VARCHAR(18),

 Age INTEGER,

 Salary FLOAT) ;

The following SQL code creates a new Table with two fields, PetID and Description. The PetID cannot be NULL. The PetID is also the primary key of the Table. The PidIndex is a index file which MS Access* will create and maintain throughout the lifetime of this Table.

CREATE TABLE Pets

(PetID INTEGER NOT NULL,

 Description TEXT,

 CONSTRAINT PidIndex

 PRIMARY KEY (Pid))

* MS Access® also requires that each field name be enclosed within square brackets. For example, to execute successfully, PRIMARY KEY (Pid) must be written as PRIMARY KEY ([Pid]).

· Additional Create Options

When a Table is created such that it will be required to be joined with other Tables, we need to specify the Table’s primary key, and the foreign key that will be used to connect to data from the other Table.

In our previous example, we wanted the Employee Table to be connected to the Child Table in SQL join queries. To do that we need to create the Employee Table as follows:

CREATE Table EMPLOYEE

(FName
VARCHAR(20)
NOT NULL,

 MInit

CHAR(1),

 LName
VARCHAR(20)
NOT NULL,

 SSN

CHAR(9)

NOT NULL,

 BDate
DATE,

 Address
VARCHAR(30),

 Sex

CHAR(1),

 Salary
INTEGER,

 SuperSSN
CHAR(9),

 DNo

INTEGER

 PRIMARY KEY (SSN),

 FOREIGN KEY (DNO) REFERENCES DEPARTMENT(DNUMBER)

ON DELETE CASCADE

ON UPDATE SET DEFAULT,

CHECK (DNO > 0));

DBMS Transactions

Transaction are monitored by the DBMS. This allows for concurrent database access whenever that is appropriate, and a locking of Database resources when concurrent access would be inappropriate.

A transaction is a unit of work that must be fully successful in order to retain the Database consistency. A transaction may, for example, have multiple parts, affecting several Tables. If a transaction has three parts, and two succeed and one fails, the Database integrity would be compromised.

Therefore SQL and (Java JDBC) allows Java programs to either automatically commit every statement execution, or block several together, committing them to the Database, only if all are successful.

If any component fails to complete successfully, the transaction can be aborted by invoking the rollback call.

The Abstract Transaction Example:

<begin Transaction>

<execute Update1>

<execute Update2>

<execute Update3>

…

<execute Updaten>

<Was each Update successful ?>

<Yes:>

 <commit Transaction>

<No:>

 <rollback Transaction>

Java Embedded SQL Basics

SQL commands can be issued from a command-line SQL command interpreter. For example, using the Oracle® Relational Database System requires.

The Java JDBC API used embedded SQL, so that the SQL code is written in-line with the Java application/Applet. This allows the full power of Java (OOPL, Polymorphism, Exception Handling, Multi-Threading concurrency, GUI-based programming to be mated to traditional Relational Database processing.

We will issue commands through Java JDBC API calls in the from of String objects which contain the SQL code.

The SQL query will be passed to the Relational Database DBMS which will process the query and return a response to the calling Java program.

In general, there are two major types of Java JDBC methods which help in issuing SQL requests. Both the methods are in the class Statement.

· The Statement Class

The statement class has two main methods:

executeQuery()
- This method is used to submit DML queries to the DBMS. These

 queries include all different incarnations of the SQL SELECT

 command.

The executeQuery() method returns a ResultSet object. The ResultSet object carries with it the Table which is the result of the SELECT query.

executeUpdate()
- This method is used to pass various DDL and DML commands to

 the DBMS. Examples would include CREATE, ALTER, or

 DROP, UPDATE, INSERT, DELETE.

The executeUpdate() method returns an int value. The value corresponds to either of two possible meanings. These meaning vary because the executeUpdate() method executes both, DDL and DML SQL commands.

· The Return Value from the executeUpdate() Method

1. If the query was a DML, such as

UPDATE Employee

SET Salary = Salary * 1.10

WHERE Title LIKE ‘%manager%’ ;

the return value int represents the numbers of rows that were affected in the update

2. If the query was a DDL, such as

CREATE Table Employee

(FName
VARCHAR(20)
NOT NULL,

PRIMARY KEY (SSN));

the return int always returns with a value of zero (0)

It is up to the Java programmer to interrogate the return int value to interpret whether, for example a zero represented a DDL statement executing, or that no rows were affected by the DML SQL command

· Overview of the JDBC Classes for Making a Connection

There are really only 3 total classes in the JDBC which allow the client to connect to a remote (or local) Database System.

1. java.sql.DriverManager

This is a class which looks at the registered available drivers and matches their appropriateness to the connection URL, and attempts to connect to the specified Database. If successful, it will return a reference to a Connection interface. Otherwise, it will throw an Exception.

2. java.sql.Driver

This is an interface, not a class. Since it is an interface, there is no implementation for this class. Rather, there will exist classes which implement the Driver interface. Such classes can be loaded at runtime, and the DriverManager object will keep track of them and select the appropriate one (based upon the Database URL) when a connection is requested.

3. java.sql.Connection
Connection is also an interface. When the DriverManager makes a connection, it returns a reference to the actual object which represents the connection to the Database. Through this reference we pass SQL requests to the Database and receive results.

· Connecting to a Database from Java

The following is a recent (May 18, 1998) list of JDBC drivers available from various vendors. These are maintained by Sun Microsystems® and can be accessed on the web at the URL, http://java.sun.com/products/jdbc/jdbc.drivers.html.

The next three pages are a listing of the currently-available JDBC drivers

Four Type of JDBC Drivers are Possible

Type 1:
The driver uses a bridging technology. The driver provides a gateway into the ODBC API. The ODBC implementation provides the actual access into the Database. Bridging technology requires software to be installed on the client machine, making it less universally accessible. The JDBC-ODBC is an example of this type of driver.

Type 2:
The driver is a native API driver which has Java code which calls C or C++ functions or methods which are provided by the Database vendors. This also requires software to be installed on the client system.

Type 3:
The driver on the client communicates through sockets to the middleware server-side which translates the generic client request into a specific API to the desired (server-side target) driver. Powerful because it does not require special software to be installed on the client side. One generic client API can communicate to different server-side middleware applications, allowing the client to flexibly connect to different Databases.

type 4:
This is an all-Java approach. These are vendor-supplied drivers which directly talk to the Database DBMS. The mode of connection is through Java sockets.

· The Client Server Two and Three-Tier Models

Two-Tier Model

Typically many clients want access to the same services, such as a Database, The World Wide Web, telnet, or ftp.

The actual data storage or work is performed for the client by the server. The client may perform some simple data processing and screening

The WWW example is that of the WWW client running a browser getting data supplied by the Web server. The browser client has a fairly simple task of usually receiving a stream of text which needs to be formatted according to the HTML tags.

As the system becomes more complex, the client becomes heavy with code, and when changes occur, the entire code may need modification, updating, or a rewrite. For very large, complex systems, we lose the obvious choice as to whether to place certain logic on the client or server. the Java client may become too unwieldy.

Three-Tier Model

We can add a middle layer, which is referred to as the business logic. In this approach, the Database client does not connect to the Database itself. Once a client does that, it is a two-tier model, and changes to the Database again affect the client code.

The solution is to isolate the Database connection in a application server, say Java application. In this way the client can access the Database indirectly through the Java middle layer application server. This is good for two major reasons: security and more robust behavior on the client.

In the large systems where it was not clear as to where some logic should go in a two-tier model, that logic usually goes to the middle tier, the application server.

In short, the three-tier model allows the business rules to be commonly factored together in the middle tier allowing multiple and various clients to get a consistent view of the server-side system

Making the Connection to a Relational Database (MS Access®)

The following makes a connection to a LAN registered MS Access® Database and creates a brand new Table in the Database.

import java.sql.*;

public class CreateTableAccess {

public static void main(String args[]) {

 try {

 Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

 new CreateTableAccess(); }

 catch (ClassNotFoundException e) { System.out.println(e); } }

public CreateTableAccess() {

 try {

 Connection connection =

 DriverManager.getConnection("jdbc:odbc:names","my","secret");

 Statement stmt = connection.createStatement();

 ResultSet results = stmt.executeQuery(

 "CREATE TABLE Pets (Pid INTEGER NOT NULL, Page TEXT,

 comment MEMO, CONSTRAINT PidIndex PRIMARY KEY (Pid))");

 // The CONSTRAINT clause is needed in MS Access® to

 // Create a Primary Key

 System.out.println("Create table completed!");

 stmt.close();

 connection.close(); }

 catch (SQLException e) { System.out.println(e); } } }

· Another Connection to a Relational Database (Oracle®)

This connection connects to an Oracle® Relational Database System across the Internet using an IP address, Server port (1521), protocol (JDBC), subprotocol (oracle), subprotocol version (thin), as well as Database user name and password.

import java.sql.*;

public class CreateTable {

public static void main(String args[]) {

 try {

 Class.forName ("oracle.jdbc.driver.OracleDriver");

 new CreateTable(); }

 catch (ClassNotFoundException e) { System.out.println(e); } }

public CreateTable() {

 try {

 // connect with host, port, Database name, user name, password

 Connection connection = DriverManager.getConnection(

 "jdbc:oracle:thin:dichter@129.5.32.7:1521:hgc5","dichter", "*******");

 Statement select = connection.createStatement();

 ResultSet results = select.executeQuery

 ("CREATE TABLE studentTable " +

 "(student_id VARCHAR(8) NOT NULL, " +

 " name VARCHAR(30), " +

 " age INTEGER CHECK (age>=0 and age<99), " +

 " subject VARCHAR(7), " +

 " PRIMARY KEY(student_id))");

 System.out.println("Create table completed!");

 select.close();

 connection.close(); }

 catch (SQLException e) { System.out.println(e); } } }

· Note: Creating a Table with the executeQuery() method is fine, but since it will return a null ResultSet object from the driver, it will trigger an exception. Alternatively, we can use the method executeUpdate(), which would return a zero(0), which need not be verified

· Setting the CLASSPATH variable to access the Driver Class

On most systems, you need to make Java aware where the Driver implementing class resides. Typically we may have different vendor products bundled together in easy to find directories. While they are easy to find for people, the Java system at runtime needs to know where classes which are loaded dynamically reside.

The CLASSPATH variable accomplishes that. It tells the runtime system that the path specified starts from one of the directories in the CLASSPATH variable.

1.
First an error is indicated because the OracleDriver class has not been located.

C:\jdbcodbc\mycode>java CreateTable
java.lang.ClassNotFoundException: oracle.jdbc.driver.OracleDriver

2.
Next, the classpath windows variable is set appropriately

C:\jdbcodbc\mycode>set classpath=.;c:\jdk1.1.5
3. A connection is made to the Oracle database. The SQLException signifies that we are trying to create a Table in the database which already exists. This table already has been defined due to having run the same Java code before.

C:\jdbcodbc\mycode>java CreateTable
java.sql.SQLException: ORA-00955: name is already used by an existing object

Note that we set the CLASSPATH variable to C:\jdk1.1.5. Note that we are trying to load the OracleDriver driver from the driver package, which is in the jdbc directory, which is in the oracle directory. Since the next run is successful, we note that the full directory of the driver named OracleDriver.class is:

· c:\jdk1.1.5\oracle.jdbc.driver

· Last Word on the CLASSPATH Variable

Setting variables will differ on different machines. The following give examples in the Windows and in the UNIX environments.

In Windows:

The following set the CLASSPATH variable

set classpath=.;c:\jdk1.1.5

The value of the CLASPATH variable can be tested for its value as shown below. The semicolon is the delimiter, the period represents the current directory. Below, three directories are registered as containing classes to be loaded at runtime.

C:\jdbcodbc\mycode>echo %CLASSPATH%

.;c:\jdk1.1.5;C:\JDK1.1.5\lib\classes.zip

In UNIX:

In UNIX, the C shell and the Korn shell use variables differently. In C shell, you need to make CLASSPATH an environment variable. In the Bourne (Korn) shells, you need to export it.

C shell

% setenv CLASSPATH = “~/java:/systems/java/lib”

Bourne shell

$ CLASSPATH=“~/java:/systems/java/lib”

$ export CLASSPATH

· Loading Data into a Database Table in JDBC API

In this code, we add two records to the Child Table. Each is executed by assigning the SQL command into the Java String, and passing the String into the JDBC driver for forwarding to the DBMS.

import java.sql.*;

public class JDBCLab2aInsert {

public static void main(String args[]) {

 try {

 Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

 new JDBCLab2aInsert(); }

 catch (ClassNotFoundException e) { System.out.println(e); } }

public JDBCLab2aInsert() {

 try {

 Connection connect = DriverManager.getConnection("jdbc:odbc:names","","");
 Statement select = connect.createStatement();

 String s = "INSERT INTO Child " +

 "VALUES ('Adam', 12, 'M','333113333')";

 select.executeUpdate(s);

 s = "INSERT INTO Child " +

 "VALUES ('Bert', 7,'M', '678114444')";

 select.executeUpdate(s);

 System.out.println("Records insert completed!");

 select.close();

 connect.close(); }

 catch (SQLException e) { System.out.println(e); } } }

·
JDBC Code Samples

Creating a table:

import java.sql.*;

public class CreateCoffees {

public static void main(String args[]) {

String url = "jdbc:mySubprotocol:myDataSource";

Connection con;

String createString;

createString = "create table COFFEES " +

"(COF_NAME varchar(32), " +

"SUP_ID int, " +

"PRICE float, " +

"SALES int, " +

"TOTAL int)";

Statement stmt;

try {

Class.forName("myDriver.ClassName");

} catch(java.lang.ClassNotFoundException e) {

System.err.print("ClassNotFoundException: ");

System.err.println(e.getMessage());

}

try {

con=DriverManager.getConnection(url,"myLogin","myPassword");

stmt = con.createStatement();

 stmt.executeUpdate(createString);

stmt.close();

con.close();

} catch(SQLException ex) {

System.err.println("SQLException: " + ex.getMessage());

} } }

· JDBC Code Samples
Inserting and Retrieving a Data Set:

import java.sql.*;

public class InsertCoffees {

public static void main(String args[]) {

String url = "jdbc:mySubprotocol:myDataSource";

Connection con;

Statement stmt;

String query = "select COF_NAME, PRICE from COFFEES";

try { Class.forName("myDriver.ClassName"); }

 catch(java.lang.ClassNotFoundException e) {

System.err.print("ClassNotFoundException: ");

System.err.println(e.getMessage()); }

try {

con = DriverManager.getConnection(url, "myLogin", "myPassword");

stmt = con.createStatement();

stmt.executeUpdate("insert into COFFEES " +

 "values('Colombian', 00101, 7.99, 0, 0)");

stmt.executeUpdate("insert into COFFEES " +

 "values('French_Roast', 00049, 8.99, 0, 0)");

stmt.executeUpdate("insert into COFFEES " +

 "values('Espresso', 00150, 9.99, 0, 0)");

stmt.executeUpdate("insert into COFFEES " +

 "values('Colombian_Decaf', 00101, 8.99, 0, 0)");

stmt.executeUpdate("insert into COFFEES " +

 "values('French_Roast_Decaf', 00049, 9.99, 0, 0)");

ResultSet rs = stmt.executeQuery(query);

System.out.println("Coffee Break Coffees and Prices:");

while (rs.next()) {

String s = rs.getString("COF_NAME");

float f = rs.getFloat("PRICE");

System.out.println(s + " " + f); }

stmt.close();

con.close(); }

catch(SQLException ex) {

System.err.println("SQLException: " + ex.getMessage());

} } }

· The ResultSet Class

A Java query using the SQL SELECT will return an object of class ResultSet. This object has several important methods which allow the processing and retrieval of data.

Typical Usage:

ResultSet result;

result = statement.executeQuery(“SELECT ……… “);

Alternatively:

ResultSet result = statement.executeQuery(“SELECT ……… “);

The cursor contains the current row of the Table which represents the query. Initially the cursor is in the row prior to the first row. We need to invoke the next() method to gain access to the first, and the each subsequent row of the query result:

The following makes the first row available:

result.next()

There is a family of get methods which allow the Java program to retrieve the data out of the current of the cursor.

A partial listing includes:

getByte()

getShort()

getInt()

getFloat()

getDouble()

getString()

getDate()

getTime()

· The ResultSet Class
Typically, processing the data in the ResultSet object is done through a loop, which continues as long as the next() method returns true. On each loop iteration, we can retrieve the data out of the current of the cursor using one of the get methods.

These ResultSet method calls, as most all JDBC method calls must be wrapped in a try clause, and catch, at least the base SQL exception, SQLException.

while (rs.next()) {

 String s = rs.getString("COF_NAME");

 float f = rs.getFloat("PRICE");

 System.out.println(s + " " + f); }

The get methods can access the cursor’s particular field (attribute) by referring to a field (column) name or by referring to its numeric position in the ResultSet. Above, the query return s a ResultSet with column names COF_NAMES and PRICE. This is because the query was formulated as follows:

String query = "select COF_NAME, PRICE from COFFEES";

Therefore, we can retrieve the first coffee by the following:

String coffee = rs.getString(“COF_NAME”);

or

String coffee = rs.getString(1);

· More on the get Methods of the ResultSet Class

A method such as getString() is not limited in retrieving data from SQL fields which are character-based, such as SQL types VARCHAR, CHAR, etc.

Most get methods will return any other type of data from the query. They will attempt to convert the data into what the requesting method requires.

For example, if we wanted to retrieve the PRICE field in the query as a String rather than a float type, we could have written our retrieval code as follows:

while (rs.next()) {

 String s = rs.getString("COF_NAME");

 String f = rs.getString("PRICE");

 System.out.println(s + " " + f); }

Method getString() is a catch-all retrieve method, because if you do not know the type of the returning field (or don’t care), you can receive all types of fields with this method.

The method getInt() can be used to retrieve any of the String or numeric type. This will always trigger a conversion, which will attempt to return the parsed field as the requested int type.
This is useful when a numeric is stored as an SQL CHAR or VARCHAR type. it is also useful when the field is a FLOAT, but there is need to read out the integer part of it.

· Updating Tables

In order to modify the Table using SQL, we need to invoke the UPDATE command. We write the Java String which uses the UPDATE command and pass it to the Relational Database System using the Statement class executeUpdate() method.

Whenever we modify the contents of a Table, the executeUpdate() return the number of rows which were modified. This can be zero, or as many rows as there exist in the Table. Fewer then the maximum will be modified if the UPDATE command includes the WHERE clause.

The following UPDATE query command sets the update string to add one to the age of any child whose name includes the letter ‘a’.

When the update is executed, we capture the number of rows which were affected by the update. Then we print the total count of affected rows.

String s = "UPDATE Child " +

 "SET AGE = AGE + 1 " +

 "WHERE CName LIKE '%a%'";

 int howMany = select.executeUpdate(s);

 System.out.println("\nNumber of Rows Updated: " + howMany + "\n");

Finally we have a method which executes a data query, and creates a String for each Database row result, and prints it to the console.

private void printAllData(Statement stmt) {

 try {

 ResultSet result;

 String s = "SELECT * FROM CHILD";

 result = stmt.executeQuery(s);

 while (result.next()) {

 String row = result.getString(1);

 row += "\t" + result.getString(2);

 row += "\t" + result.getString(3);

 row += "\t" + result.getString(4);

 System.out.println(row); } } // try

catch (SQLException sql) { } }

· JDBC Prepared Statements

The class PreparedStatement is derived form the Statement class. The Statement object is adequate whenever you need to execute a single query. If you need to submit a query multiple times, that Statement object paradigm is inefficient.

The Statement class does not have a statement until it is issued, as in the following:

stmt.executeQuery(s);

 It is then sent immediately to the DBMS for processing. The DBMD must parse the SQL code for correctness, then compile it into the native machine code. Each time a statement is submitted, this process is repeated.

The PreparedStatement is given an immediate template to an SQL query. This is sent immediately to the DBMS, where it is parsed and compiled, in preparation for execution. Since the PreparedStatement is a template, the actual parameters are not included in the template, and can be assigned at any time. Once assigned the statement can be sent for execution to the DBMS. The DBMS stores the compiled partial statement, and can receive the missing parameters anytime as long as the connection is open. The parameters are fitted into the precompiled code, and can execute without processing the SQL code. The parameters can be changed over and over, and the statement can execute without translation delay on the DBMS server.

· PreparedStatement Class

The following steps outline the way to use the PreparedStatement class for creating, loading, reloading, and executing fast new but similar queries.

Step 1: Create the PreparedStatement
String s = "UPDATE Employee SET Hobby = ? WHERE ELname LIKE ?“ ;

PreparedStatement prepStmt = connection.prepareStatement(s);

Step 2: Load the missing parameters (the ?’s) with PreparedStatement method calls.

prepStmt.setString (1, “Bicycling”);

prepStmt.setString(2, “”Sherman”);

Step 3: Execute the PreparedStatement with the loaded parameters

prepStmt.executeUpdate ();

Step 4: Optionally, we can reload the parameters and re-execute the query

prepStmt.setString(2, “”Sherman”);

prepStmt.executeUpdate ();

Step 5: Optionally, we can clear all parameters by the method clearParameters()

prepStmt.clearParameters()

· Transaction Processing

The transaction is a unit of work defined as an atomic quantity. The transaction is valid if all the component parts of the transaction are valid. If any of the parts of the transaction do not complete successfully, then all parts which succeeded must be rolled back so that no change occurs in the Database and the state of the Database is consistent.

Transactions preserve the integrity of the Database in that several changes to one Table or even several changes to several Tables may be needed to leave the Database in a consistent state.

For example, we may update the total sales made by Salesperson X from Division Y. Suppose, that we have a Table named Salesman and another named Division. The Salesman Table contains for all salespeople the year to date sales totals. The Division Table has sales totals for all salespeople from all divisions. A transaction may accumulate the sales of salesman Smith for the current month. Then it needs to update the total sales for the division in which Smith works in the Division Table. If the first is successful and the second fail, the Database would be left in an inconsistent state.

The Java JDBC solution uses well-known COMMIT and ROLLBACK commands:

1. Turn the default of committing every SQL command

connect.setAutoCommit(false);

2. Proceed to make two or more calls to executeQuery() or executeUpdate()

3. If no SQL calls trigger an Exception, commit the entire transaction

connect.commit()

4. If any call triggers an Exception, rollback the entire transaction

connect.rollback()

· Example of Transaction Processing (code excerpt)

try {

 con.setAutoCommit(false);

 String s = "INSERT INTO Employee " +

 "VALUES ('999779944','Green','Lawn',37,'655-1212','')";

 stmt.executeUpdate(s);

 s = "INSERT INTO Employee " +

 "VALUES ('011779944','Rodriquez','Eva',37,'555-1212','Hiking'

 stmt.executeUpdate(s);

 s = "INSERT INTO Child " +

 "VALUES ('Brian', 17,'M', '011779944')";

 stmt.executeUpdate(s);

 s = "INSERT INTO Child " +

 "VALUES ('Jane', 7,'F', '011779944')";

 stmt.executeUpdate(s);

 con.commit();

 con.setAutoCommit(true); }

catch (SQLException sql){

 echo("Dup Found!!\nTransaction Aborted\n" + "\007");

 echo("Transaction Rollback!!\n\n");

 try { con.rollback(); }

 catch (SQLException sql2) { echo("Exception During Rollback!!\n"); } }

· Advanced Exception Handling

There are three important levels of Exception messages that are important to Java JDBC programmers. The SQLException object carries all three pieces of information, but each can be produced using different methods of the SQLException class.

1. The basic message. This is the same as in standard Java class Exception. It can be retrieved by the standard getMessage() method.

2. The SQL state is the error as defined by the X/Open SQL state conventions. This is a standard numeric code. The value can be generated by the method getSQLState().

3. The last is the vendor-specific code. it is typically numeric, and is dependent on the vendor of the JDBC driver. The method to access it is getErrorCode().

To simply report all three to the to the Java user, we place all three method calls in the catch portion of the exception handler.

Code excerpt:

try { …

 … }

catch (SQLException sql) {

 System.out.println (“SQLException caught: “ + sql.getMessage());

 System.out.println (“SQL State: “ + sql.gwrSQLState());

 System.out.println (“Vendor Code: “ + sql.getErrorCode()); }

· Advanced Exception Handling

In some cases, Java may throw more than one Exception at a time. Clearly we can catch them in the hierarchical sense. In this approach, we place the most specific Exceptions first, and as we get lower in the catch clauses, we have more general exceptions, down to the most general, say the SQLException.

The shortcoming of this approach is that only one error will be caught in the case that multiple exceptions are thrown. If multiple exceptions are thrown the subsequent exceptions are chained to the initial one, and are accessible by the Exception class method getNextException(). We can now loop in the catch block while that method returns a non-null value to our Exception object.

Code Example:

try { …

 … }

catch (SQLException sql) {

int i = 1;

while (sql != null) {

 System.out.println (“Error #” + (i++) + “\n________”);

 System.out.println (“SQL Exception: “ + sql.getMessage());

 System.out.println (“SQL State: “ + sql.gwrSQLState());

 System.out.println (“Vendor Code: “ + sql.getErrorCode());

 sql.getNextException(); } } // catch

} // try

· The ResultSetMetaData Class

This class is useful whenever we need to get information about the ResultSet object which is returned as part of an executed query.

Important methods include:

getColumnCount()
returns the number of columns in the returned ResultSet object

getColumnType()
returns an integer which specifies the SQL type in the column

getColumnName()
returns the String value of the specified column

getColumnLabel()
returns the field name for the specified column

getTableName()
returns the name of the Table for the particular column. This is useful only in Join queries

isNullable()
returns true of the specified column cam receive a NULL field value

isWritable()
returns true if a write to the column may succeed

isDefinitelyWritable()
returns if a write to the column will succeed

isReadOnly()
returns true if the specified column is read-only

· Code Example Using ResultSetMetaData

import java.sql.*;

public class JDBCLab8RSMetaData {

public static void main(String args[]) {

 try {

 Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

 new JDBCLab8RSMetaData (); }

 catch (ClassNotFoundException e) { System.out.println(e); } }

public JDBCLab8RSMetaData() {

try {

 Connection connect = DriverManager.getConnection("jdbc:odbc:names","","");
 Statement select = connect.createStatement();

 echo("Table: Child\n");

 printAllData(select);

 select.close();

 connect.close(); }

catch (SQLException e) { System.out.println(e); } }

private void printAllData(Statement stmt) {

try {

 ResultSet result;

 String s = "SELECT * FROM CHILD";

 result = stmt.executeQuery(s);

 ResultSetMetaData rsmd = result.getMetaData();

 int cols = rsmd.getColumnCount();

 for (int i = 1 ; i <= cols ; i++) {

 if (i > 1) System.out.print("\t");

 String colName = rsmd.getColumnLabel(i);

 System.out.print(colName); }

 echo("");

 for (int i = 1 ; i <= cols ; i++)

 System.out.print("-----\t");

 echo("");

 while (result.next()) {

 String kidName = result.getString(1);

 String row = kidName.substring(0,Math.min(7,kidName.length()));

 row += "\t" + result.getString(2);

 row += "\t" + result.getString(3);

 row += "\t" + result.getString(4);

 echo (row); } } // try

catch (SQLException sql) { } }

private void echo(String mssg) {

 System.out.println(mssg); } }

· The DatabaseMetaData Class
This class is useful whenever we need to get information about the Database in which we are executing SQL code.

Important methods include:

getColumns()
returns a list of all columns for a specified Table

getProcedures()
returns a listing for all available procedures in the Database

getTables()
returns all the available Tables in the Database

getURL()
returns the URL of the Database

supportsTransactions()
returns true if the Database Systems supports transactions

getPrimaryKeys()
returns a list of all columns which make up the primary key for a Table

getDatabaseSchemas()
returns a list of all available Database schemas for the current Database

· Frame-Based Full Code Example

// File: dichter3.java

// Example with a Frame-based Java Application which has

// ActionEvent and WindowEvent handling

// Exception and Warning checking as well as

// shows use of the ResultSetMetaData and DatabaseMetaData classes

import java.net.URL;

import java.sql.*;

import java.awt.*;

import java.awt.event.*;

public class dichter3 extends Frame implements ActionListener {

static TextArea text;

static TextField ln, fn;

static Button dataAdd;

static Panel bPanel;

static Connection con;

static Label status;

public dichter3() {

super("Database Entry");

setSize(300,300);

addWindowListener(new FrameCloser());

setLayout(new BorderLayout(8,8));

text = new TextArea("Database Result", 20,40);

text.append("\n*******************\n");

text.setEditable(false);

bPanel = new Panel();

bPanel.setLayout(new BorderLayout(3,3));

ln = new TextField(10);

fn = new TextField(10);

dataAdd = new Button("Add Data");

status = new Label("Enter a New Person");

status.setBackground(Color.yellow);

this.add("West",text);

bPanel.add("South",status);

bPanel.add("West",ln);

bPanel.add("Center",fn);

bPanel.add("East",dataAdd);

this.add("South",bPanel);

dataAdd.addActionListener(this);

text.setBackground(Color.green);

setBackground(Color.lightGray);

setVisible(true);

String url = "jdbc:odbc:names";

String query = "SELECT First, Last FROM PEOPLE ORDER BY Last";

try {

 Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

 con = DriverManager.getConnection (url, "my-user", "my-passwd");

 checkForWarning (con.getWarnings ());

 DatabaseMetaData dma = con.getMetaData ();

 System.out.println("\nConnected to " + dma.getURL());

 System.out.println("Driver " + dma.getDriverName());

 System.out.println("Version " + dma.getDriverVersion());

 System.out.println("");

 Statement stmt = con.createStatement ();

· Frame-Based Full Code Example …
 ResultSet rs = stmt.executeQuery (query);

 // con.commit();

 dispResultSet (rs);

 rs.close();

 stmt.close();

 ln.requestFocus(); }

catch (SQLException ex) {

 System.out.println ("\n*** SQLException caught ***\n");

 while (ex != null) {

 System.out.println ("SQLState: " + ex.getSQLState ());

 System.out.println ("Message: " + ex.getMessage ());

 System.out.println ("Vendor: " + ex.getErrorCode ());

 ex = ex.getNextException ();

 System.out.println (""); } }

catch (java.lang.Exception ex) { ex.printStackTrace (); } }

private static boolean checkForWarning (SQLWarning warn) throws SQLException {

boolean rc = false;

if (warn != null) {

 System.out.println ("\n *** Warning ***\n");

 rc = true;

 while (warn != null) {

 System.out.println ("SQLState: " + warn.getSQLState ());

 System.out.println ("Message: " + warn.getMessage ());

 System.out.println ("Vendor: " + warn.getErrorCode ());

 System.out.println ("");

 warn = warn.getNextWarning (); } }

 return rc; }

· Frame-Based Full Code Example …
private static void dispResultSet (ResultSet rs) throws SQLException {

int i;

ResultSetMetaData rsmd = rs.getMetaData ();

int numCols = rsmd.getColumnCount ();

for (i=1; i<=numCols; i++)

 text.append(rsmd.getColumnLabel(i)+ "\t");

text.append("\n-------\t-------\n");

while (rs.next ()) {

 for (i=1; i<=numCols; i++) {

 text.setText(text.getText() + rs.getString(i));

 text.append("\t"); }

 text.append("\n"); }
}

public static void main (String args[]) {

 dichter3 app = new dichter3(); }

public void actionPerformed (ActionEvent e) {

String last = ln.getText();

String first = fn.getText();

try {

 String sql = "select * from PEOPLE where First = '" + first + "' and Last = '" + last + "'";

 Statement s1 = con.createStatement();

 ResultSet rset = s1.executeQuery (sql);

 ResultSetMetaData rmd = rset.getMetaData ();

 if (! rset.next()) { // if record not found in DB

 Statement s2 = con.createStatement();

 s2.executeUpdate("INSERT into People(First, Last) VALUES ('" + first +

 "', '" + last + "')");

 s2.close();

 text.append(first + "\t" + last + "\n");

 status.setText(first + " " + last + " added successfully");

 try {

 Thread.sleep(2000);

 System.out.print("\007"); }

 catch (InterruptedException ie) { }

 fn.setText("");

 ln.setText("");

 status.setText("Enter Next Person");

 ln.requestFocus(); }

 else {

 status.setText("ADD Error: " + first + " " + last + " already exists in the Datbase");

 try {

 System.out.print("\007");

 Thread.sleep(2000);

 System.out.print("\007"); }

 catch (InterruptedException ie) { }

 fn.setText("");

 ln.setText("");

 status.setText("Enter Next Person");

 ln.requestFocus(); } } // else

catch (SQLException se) {

 System.out.println("Error in actionPerformed(): " + se.toString()); } } }

· Frame-Based Full Code Example …

import java.awt.event.*;

public class FrameCloser extends WindowAdapter {

public void windowClosing(WindowEvent e) {

 e.getWindow().setVisible(false);

 System.exit(0); } }

· Combining Hashtables and Vectors and execute() Method

In this code, a Java application calls a method to execute its query. The query can be either a an update or a query. Java checks the return value of method execute(). if true, there is a ResultSet, and it is retrieved by Statement method getResultSet().

// File HashtableVector.java

// Written by Julius Dichter

// This program demonstrates the use of Hashtables and Vectors

// in a JDBC data query. The method runSQL() executes the String

// query it is passed, and return s a Vector with each location

// being a Hashtable keyed on the Database column name

import java.util.*;

import java.sql.*;

public class HashtableVector {

static Connection connect;

public static void main(String [] s) {

 new HashtableVector(); }

public HashtableVector() {

Vector v = null;

String url = "jdbc:odbc:names";

String selectStr = "SELECT * FROM PEOPLE ORDER BY Last";

try { Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver"); }

catch (ClassNotFoundException e) { }

try {

 connect = DriverManager.getConnection (url, "", "");

 System.out.println("Connected...");

 v = runSQL(selectStr); }

catch (SQLException ex) { }

displayResults(v);

} // end constructor

private static void displayResults(Vector v) {

Enumeration enum = v.elements();

while (enum.hasMoreElements()) {

 Hashtable h = (Hashtable) enum.nextElement();

 StringBuffer sb = new StringBuffer("Name: ");

 sb.append(h.get("Last")); sb.append(", ");

 sb.append(h.get("First")); sb.append(" -- City: ");

 sb.append(h.get("City")); sb.append(" -- State: ");

 sb.append(h.get("State"));

 System.out.println(sb);

} } // while and displayResults()

· Combining Hashtables and Vectors and execute() Method …

public static Vector runSQL (String sql) throws SQLException {

Vector v = new Vector();

try {

 Statement stmt = connect.createStatement();

 if (stmt.execute(sql)) { // not false => ResultSet returned

 ResultSet result = stmt.getResultSet();

 ResultSetMetaData meta = result.getMetaData();

 int col = meta.getColumnCount();

 while (result.next()) {

 Hashtable h = new Hashtable(col);

 for (int i= 1 ; i <= col ; i++) {

 Object obj = result.getObject(i);

 h.put(meta.getColumnLabel(i), obj); } // for

 v.addElement(h); } // while

 return v; } // if

 return null; } // try

catch (SQLException sqle) {

 System.out.println("Major Problem " + sqle.toString());

 return null; } }

} // HashtableVector

The tail end of the console output:

Name: Mann, Alex -- City: New Haven -- State: CT

Name: Manny, Rivera -- City: Brooklyn -- State: NY

Name: Marco, Rumsey -- City: Littleville -- State: NM

Name: Mickey, Rivers -- City: New York -- State: NY

Name: Munster, Herman -- City: TVLand -- State: CA

Name: Murphy, Ted -- City: Branford -- State: CT

Name: Murphy, Dog -- City: Baltimore -- State: MD

Name: Musial, Stan -- City: Acton -- State: MA

Name: Ricardo, Mullins -- City: Dallas -- State: TX

Name: Rodriquez, Mimi -- City: Storrs -- State: CT

Name: Roger, Maris -- City: New York -- State: NY

Name: Skelton, Red -- City: Cleveland -- State: OH

Name: Ted, Walters -- City: Springfield -- State: MA

Name: Thurman, Munson -- City: Cleveland -- State: OH

Name: Tom, Hunter -- City: Raleigh -- State: NC

Name: Washington, George -- City: Vernon -- State: NY

Name: Zamboni, Sal -- City: Detroit -- State: MI

· Executing Stored Procedures
Most Database Systems allow the user to write procedures which are stored permanently as a part of the DBMS. These are usually referred to as stored procedures. // File: JDBCLab6aStoredProcedureOracle.java

import java.sql.*;

public class JDBCLab6aStoredProcedureOracle {

public static void main(String args[]) {

 try {

 Class.forName ("oracle.jdbc.driver.OracleDriver");

 new JDBCLab6aStoredProcedureOracle (); }

 catch (ClassNotFoundException e) { System.out.println(e); } }

public JDBCLab6aStoredProcedureOracle() {

String mySQLProcedure = "CREATE OR REPLACE PROCEDURE DISPLAY ";

 mySQLProcedure += "AS ";

 mySQLProcedure += "BEGIN ";

 mySQLProcedure += "SELECT * FROM EMPLOYEE ";

 mySQLProcedure += "WHERE HOBBY = 'Hiking'; ";

 mySQLProcedure += "END;";

 try {

 Connection connect = DriverManager.getConnection(

 "jdbc:oracle:thin:@129.5.32.7:1521:hgc5","scott", "tiger");

 Statement stmt = connect.createStatement();

 stmt.executeUpdate(mySQLProcedure);

 CallableStatement callStmt = connect.prepareCall("{call DISPLAY}");

 ResultSet result = callStmt.executeQuery();

 stmt.close();

 connect.close(); }

 catch (SQLException e) { System.out.println(e); } }

private void printAllData(ResultSet result) {

 try {

 while (result.next()) {

 String row = result.getString(1);

 row += "\t" + result.getString(2);

 row += "\t" + result.getString(3);

 row += "\t" + result.getString(4);

 echo (row); } } // try

 catch (SQLException sql) { } }

private void echo(String mssg) {

 System.out.println(mssg); } }

· The CallableStatement Class
To create a CallableStatement object are create with the method prepareCall()

CallableStatement cs = connect.prepareCall(“{ call myProcedure(?, ?, ?) }”);

The cs object, in this case contains a call to the stored procedure myProcedure stored as part of the DBMS.

The ?’s represent the parameters that the procedure expects to receive as part of the call. To set the parameters, we need to use the setString(), setInt(), setFloat() etc. methods inherited from the PreparedStatement class.

cs.setInt (1, 34);

cs.setFloat (2, 35.8);

cs.setString (3, “Marketing”);

Then, the procedure call can be made to the DBMS.

ResultSet rs = cs.executeQuery()

Suppose that the third parameter was an OUT parameter, meaning that the procedure returned a value as well as a ResultSet.

cs.registerOutParameter(3, java.SQL.Types.INTEGER);

ResultSet rs = cs.executeQuery();

int myResultValue = cs.getInt(3);

· Executing Generic Queries Using Method execute()

The most powerful and generic SQL statement execution method is execute(). It is used when the stored procedure, for example, return multiple ResultSets or multiple update counts or some combination of both. This occurs in a stored procedure which runs several SQL commands as part of its definition. It can happen when the Java program executes an unknown SQL query. Unknown means that the program received it, but did not originate it.

For example, if a procedure returns two result sets, then the execute statement does not (on its own) return any ResultSet object automatically. We need to invoke the method getResultSet(). We then need to call any appropriate get methods to access the OUT parameters. Then we need to call method getMoreResults() and once again getResultSet() to access the second ResultSet object.

Alternatively, if there are two update counts, we can call getUpdateCount(), getMoreResults(), and getUpdateCount(), again.

Generally, when we do not know if execute() contains a ResultSet or an update count. But execute() returns true if the return value is a ResultSet and false if it is a Java int.

IMPORTANT Conditions:

There are no more results when the following conditions are true

getResultSet() == null AND getUpdateCount() == -1

getMoreResults() == false AND getUpdateCount() == -1

The following is a generic query processing code:

stmt.execute(<something or other>);

while (true) {

 int rowCount = stmt.getUpdateCount()

 if (rowCount > 0) {

 System.out.println(rowCount + “ rows altered”);

 stmt.getMoreResults();

 continue; }

 if (rowCount == 0) {

 System.out.println(No rows changed or a DDL statement”);

 stmt.getMoreResults();

 continue; }

// We have a resultSet or no more results

 ResultSet rs = stmt.getResultSet();

 if (rs != null) {

 while (rs.next()) {

 // process the ResultSet

 stmt.getMoreResults();

 continue; }

 break; } // no more results

· Using Swing (JFC) Component Table to Read/Update a Database

· Swing Components use a MVC philosophy

model - the logical view of the data

view - the presentation of the data

control - the control of the data

· Example of Read-only Table
/* * @(#)TableExample3.java
1.4 97/12/03

 *

 * Copyright (c) 1997 Sun Microsystems, Inc. All Rights Reserved. */

import com.sun.java.swing.*;

import com.sun.java.swing.table.*;

import java.awt.event.WindowAdapter;

import java.awt.event.WindowEvent;

import java.awt.Dimension;

public class TableExample3 {

 public TableExample3() {

 JFrame frame = new JFrame("Table");

 frame.addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e) {System.exit(0);}});

 // Take the dummy data from SwingSet.

 final String[] names = {"First Name", "Last Name", "Favorite Color", "Favorite Number", "Vegetarian"};

 final Object[][] data = { {"Mark", "Andrews", "Red", new Integer(2), new Boolean(true)},

 {"Tom", "Ball", "Blue", new Integer(99), new Boolean(false)},

 {"Alan", "Chung", "Green", new Integer(838), new Boolean(false)},

 {"Jeff", "Dinkins", "Turquois", new Integer(8), new Boolean(true)},

 {"Amy", "Fowler", "Yellow", new Integer(3), new Boolean(false)} };

 // Create a model of the data.

 TableModel dataModel = new AbstractTableModel() {

 // These methods always need to be implemented.

 public int getColumnCount() { return names.length; }

 public int getRowCount() { return data.length;}

 public Object getValueAt(int row, int col) {return data[row][col];}

 // The default implementations of these methods in

 // AbstractTableModel would work, but we can refine them.

 public String getColumnName(int column) {return names[column];}

 public Class getColumnClass(int col) {return getValueAt(0,col).getClass();}

 public boolean isCellEditable(int row, int col) {return (col==4);}

 public void setValueAt(Object aValue, int row, int column) {

 data[row][column] = aValue; } };

// Construct the actual JTable object

 JTable tableView = new JTable(dataModel);

 JScrollPane scrollpane = JTable.createScrollPaneForTable(tableView);

 scrollpane.setPreferredSize(new Dimension(700, 300));

 frame.getContentPane().add(scrollpane);

 frame.pack();

 frame.setVisible(true); }

 public static void main(String[] args) {

 new TableExample3(); } }

Use CallableStatement to run the stored procedure

Create a stored procedure on the Oracle ® System

Program output

Table: Child

CName Age Sex SS

----- ----- ----- -----

Charles 10 M 444558888

Edward 13 M 678114444

Jody 16 F 121779090

Samanth 15 F 678114444

Victor 4 M 333113333

Brian 19 M 011779944

Jane 9 F 011779944

Iterate to the next exception, if one exists. If no more exceptions follow, the sql object is assigned null.

Perform Exception handling in the exception handler

Commit all uncommitted transactions

Turn off auto-commit

Forcing a conversion to String class

Connect to a Windows registered Database, using JDBC protocol, OBDC subprotocol

Load the JDBC-ODBC driver bridge

Specified Table constraint

Specifies how to maintain integrity

Specified the foreign key relation

Specify primary and foreign keys

The constraint clause is required only for MS Access Database

Java: JDBC Relational Database Connectivity

