Simple Hashing

Location of data records can be handled with

linear search O(n)

search of an index file

binary search O(ln n)

search a fixed-length index file

hierarchical index search O(c) where c is the number of levels in the index

search a mutli-level index

search a B-tree index

Hashing is a way to locate the data as a function of the data itself, rather then by a sequence of comparisons.

The ideal complexity of a computation of the data location is O(1). The complexity is not a function of the number of data elements stored.

Example of memory hashing approach.

store 25 keys in range of 0 … 999 are to be stored in a hashtable

each hashtable entry has a key field and reference filed

initialize the hashtable to 1000 “-1”
 (invalid) values for the keys

store each key = i into location hashtable [i]

now 25 of the 1000 hashtable records are valid, all others are invalid

Our hash function is H(i) = i

To check if key 123 is in the hashtable, we compute H(123) => 123

We index the hashtable at index 123, and compare 123 against the key field

If the compare matches the reference is correct, if field is “-1” the reference in invalid

Example of hashtable

	-1
	?

	2
	2811

	…
	

	123
	1034

	…
	

	-1
	?

	999
	3340

Note:

The H() satisfies the O(1) requirement for immediate lookup

The hashtable implementation is not space efficient as 975/1000 hashtable slots are never used

Suppose we had a set of employees in a company, say n = 500. Each one has a SS#.

A SS# has 9 digits. Then a hashtable with 109 key locations would have a unique location for each possible SS#.

The space waste would be 999,999,500 / 1,000,000,000 or 0.9999995

To improve the approach, we could reduce the amount of hashtable locations to be equal to the number of actual number of keys.

In the example of 25 unique keys in the range 0 … 999, we could create a hashtable with 25 locations.

Now the H() cannot be H(i) = i

We could modify H to be H(i) = i modulo 25

The function would return an index within the 0 .. 24 range

Example of new hashtable

H(52) => 2

H(129) => 4

H(500) =>0

H(273) =>23

H(49) => 24

	500
	2399

	-1
	

	52
	12324

	-1
	

	129
	7645

	-1
	

	-1
	

	-1
	

	-1
	

	-1
	

	-1
	

	-1
	

	-1
	

	-1
	

	…
	

	
	

	
	

	
	

	
	

	
	

	…
	

	-1
	

	-1
	

	273
	3452

	49
	2544

Problems can occur when a key passed into the H() returns an index which was returned by a previous key.

Example H(273) => 23

But H(73) => 23 also returns a 23
There is a set of keys which will return the same hashtable location

25 * v + 23
where v = 0, 1, 2, 3 … , 39

In general, there will be 1000 / 25 key values which will return the same location.

Since we do not know what the keys look like in advance, we have a real chance of two keys colliding in the H().

We need to handle collisions as a part of the Hashing strategy

One approach the linear probing.

storing data

apply H()

If hashtable gas no entry, store the key and reference.

If collision occurs, we seek sequentially in the hashtable for a first-available location.

searching for data

apply H()

If location is empty, the key is not in the hashtable

If there is a match, the key and reference is in the hashtable

If there is a mismatch, we begin a linear search for the element. We may locate it, or find an empty slot (indicating it si not in the hashtable).

Improving Hashing

Three areas can be improved

1. increase table capacity

2. resolve collisions in a different way

3. use a different hashing function

Increasing table capacity may reduce collisions, but will not eliminate it. A table with 365 locations and random 23 keys has a chance higher than 0.50 of at least one collision to occur

We should make the hashtable larger than the number of keys. A packing density of 50% to 80% is considered a good operating range.

Chaining is a collision handling way to make all keys which hash to the same location become linked into a list of keys. With a hash table of n we have a set of n chains.

Insertion, deletion, search requires a linear search of the particular chain

Example

A set of employee names can be hashed with a hashing function which returns the offset in the alphabet of the first letter of the last name. We could use any operation on any set of characters from the name fields to compute a location.

Another collision handling technique is quadratic probing, which reduces the clusters of keys created with the linear probing. It uses the following technique to resolve a collision at index i
i + k2 , i – k2

k = 1, 2, 3, …

A basic average analysis of hashing implemented with chaining

Assume a hashtable with m locations and n key entries

	1
	0
	1/m
	length list 0

	2
	1
	1/m
	length list 1

	..
	..
	
	

	..
	..
	
	

	m
	m-1
	1/m
	length list m-1

We assume that every list is an equally likely outcome of a hashing function, i.e. probability = 1/m

The average complexity on an insertion at back of list

A(n) = (i = 0 .. m-1 pi Ti(n)

= 1/m * = (i = 0 .. m-1 [length of list i]

= n/m
 (because the sum of all lists must equal the number of keys in the hashtable)

Then if m (n, we have A(n) = O(1)

The average complexity on an unsuccessful retrieval

We fail to find the key in the list returned by the hashing function.

Every list is also equally likely to be returned from the hashing function

The analysis is the same as that for insertion (above)

The average complexity on a successful retrieval

If we insert keys at the back of the list, then the complexity of a successful retrieval is one more compare than in insert

Consider the jth entry into the hashtable

average cost of its insertion is (j-1) / m comparisons

(because when inserting the jth element, j-1 elements are in all lists combined)

So retrieval cost is

(j-1) / m + 1

The average of all possible successful retrievals is then

A(n) = 1/n * (j = 1 .. n [(j-1) / m + 1]

= 1/mn * (j = 1 .. n (j – 1) + 1

note: (j = 1 .. n (j – 1) = (n(n-1)) / 2

= (n – 1) / 2m + 1
which is O(1) when m (n

The average complexity on a successful deletion

Is same as successful retrieval, i.e. (n – 1) / 2m + 1

Static Hashing – utilization of hashing for files which have a predictable size allowing some variation

Extendible Hashing – allows hashing in files that vary greatly in size while maintaining the direct access performance

Hashing functions:

Ex:

1000 memory slots

Key is a string (say a first name)

Ue 1st two characters of string ascii value to multiply, then take last three digits as the hashing result

H(“Joseph”) ((74) * (111) = 8214 (214

H(“Tomas”) ((84) * (111) = 9324 (324

H(“Adam”) ((65) * (100) = 6500 (500

H(“Melvin”) ((77) * (101) = 7777 (777

What makes a good hashing algorithm?

Why is our previous example not a good hashing algorithm? Because it does not spread the data evenly across the hashtable.

Combinations of 1st to letters may be common:

H(“Joseph”) = H(“John”) = H(“Joanne”) = … etc

How much memory should a hashtable use?

Generally, the hashtable should be larger than needed. For n keys we should have n * k slots, where k is a real number greater than 1.0

If k is 1.0, we would need perfect hashing to map the keys to the hashtable without collisions.

Perfect hashing has been shown to be nearly impossible, with a probability 10 –120,000 providing a perfect hash solution.

A packing density is the proportion of slots which are occupied when the hashtable is full.

A good hashing algorithm should do a lot of randomizing, that is, rearranging the data from its normal order.

It is a good idea to use a good percentage of the key for this randomization process.

General Folding and adding algorithm

1. represent key in numerical form

2. perform fold and add

3. perform modulo by a prime number for the slot location

Example:

J
o
s
e
p
h

74
111
115
101
112
104

M
e
l
v
i
n

77
101
108
116
105
110

If our key is shorter than 6 characters, we could pad

J
o
n

74
111
110
32
32
32

Fold and add separates parts of the key into subparts and then adding the subparts together

J
o
s
e
p
h

74
111
115
101
112
104

74 + 111 | 115 + 101 | 112 + 104

74,111 + 115,101 + 112,104 = 301,316
one result of fold/add

74,111 % 19,937 + 115,101 % 19,937 + 112,104 % 19,937 =

14,300 + 15,416 + 12419 = 42,135
another possible result

Here we divide by a large prime number which tends to produce a better distribution

Finding the actual slot address

We usually take the modulo of the folded key by the size of the address space.

The distribution will be better if we use an address space which has a prime number of slots. We choose the prime typically close to our desired number of slots.

Ex

If our desired number of slots is 100, then a good choice would be 101, since it is a prime close to the best size

H(“Joseph”) (42,135 (18

So the record with key “Joseph” hashes to slot number 18

Hashing distributions:

Optimal - uniform distribution, also called perfect hash – all keys map to unique hashtable slots

Typical – most keys map to unique hashtable slots but some do collide (synonyms)

Worst – all keys map to same slot (very unlikely)

Realistic Worst - all keys map to subset of hashtable slots

To avoid poor distributions you need to be aware of the expectation of the set ok keys that you are likely to see.

You need to use intelligence in choosing the hashing function

You also need to experiment to test your expectation

Ex

A Hashtable of 10,000 slots stores 8,000 employees hashed by first letter of last name.

All employees would hash to 26 of the 10,000 slots – although may slots, such as Z(26), X(24) would be nearly empty. Others such as J(10) would be receiving much more than 1/26 of the total key set.

Hash method strategies:

The methods to generate the hash function work well when the record has some key values that have randomization inherent (such as a name, user ID, etc …) or have a natural way of spreading the out.

Additional methods

squaring the key – the hash function squares the key and retrieves some number of digits from the inside of the number. The result can be a modulo of the number of slots.

ex

original key

squared

extract middle 3 digits

key = 1253
(
1570009
(
700

key = 1234
(
1522756
(
227

key = 1425
(
2030625
(
306

key = 1611
(
2595321
(
953

radix transformation – the key is translated to a different base (such as octal). The result can be a modulo of the number of slots (here we use 101 slots).

ex

original key

octal key
octal key MOD 101

key = 1253
(
2345
(
22

key = 1234
(
2322
(
100

key = 1425
(
2621
(
96

key = 1611
(
3113
(
83

Hashing Analysis

We assume that we have a total of n slots in the hashtable

We assume that we have hashed all the keys into the table

For any key there are two probabilities:

Pr(Y) - the probability the hashtable slot is chosen

Pr(N) - the probability the hashtable slot is not chosen

Pr(Y) = 1/n

Pr(N) = 1 - 1/n = (n – 1) / n

Probability that two keys hash to a given slot

Pr(Y) * Pr(Y) = 1/n * 1/n = 1 / n2
If n = 100,

then Pr(Y) * Pr(Y) = 1 / 104 = 0.0001

Probability that one key hashes to a given slot and the other key to any other slot

Pr(Y) * Pr(N) = 1/n * (n – 1) / n = (n – 1) / n2
If n = 100,

then Pr(Y) * Pr(N) = 0.0099

Probability that two keys hash to a given slot and two other keys do not

Pr(Y) * Pr(Y) * Pr(N) * Pr(N) = (1/n)2 * ((n – 1) / n)2

If n = 100,

then Pr(Y) * Pr(N) = 0.009901

The number of ways that the four keys can have two hash to a given slot and the other two not, can occur in various ways

YYNN, YNYN, YNNY, NYYN, NYNY, NNYY

(each one has the same probability = 0.009901)

So the total probability is

6 * 0.009901 = .058806

If we have r keys hash, the probability of x of them hashing to a given address is given by

Pr(Y)x * Pr(N)r-x

The number of ways we can choose x elements out of a possible r elements is given by the binomial coefficient

Cr,x = r! / (r-x)! x!

So … given a set of r keys, the probability that a given address will be chosen x times is

Pr (x) = Cr,x * Pr(Y)x * Pr(N)r-x = Cr,x * (1 / n)x * ((n-1) / n)r-x

The probability that a single key hashes to a given slot (n slots) is 1 / n
The probability that a set of r keys hashes to a given slot is r / n
The Poisson probability has a closed form for p(x)

p(x) = (r/n)x * e –(r/n) / x !

The probability that a given slot will have x keys hash to it

n - number of available addresses

r - number of records to be stored

x - number of records assigned to a given address

Given
r/n = 1

p(0) = 1 0 * e –1 / 0! = .368

p(1) = 1 1 * e –1 / 1! = .368

p(2) = 1 2 * e –1 / 2! = .184

p(3) = 1 3 * e –1 / 3! = .061

p(4) = 1 4 * e –1 / 4! = .015

p(5) = 1 5 * e –1 / 5! = .003

SUM

 0.999

We can use the p(x) to predict the number of hashtable slots with 1, 2, 3, 4, etc keys hashing to it, given by

N p(x)

If the probability that a given slot will have 1 key hash to it is 36.8%, then with, say 500 slots, 184 slots will have 1 key hash to it

500 * p(1) = 500 * .368 = 184

Numerical example:

Suppose we have a file with n = 5000, r = 5000

n* p(0) = 5000* 0.368 = 1840

n*p(1) = 5000 * 0.368 = 1840

n*p(2) = 5000* 0.184 = 920

n*p(3) = 5000* 0.061 = 305

n*p(4) = 5000* 0.015 = 75

n*p(5) = 5000* 0.003 = 15

gives the expected number of slots with 0, 1, 2, … , 5 keys hashing to them

How does packing density affect this collision problem?

When r = n, packing density is 100%

When n > r, then packing density goes below 100%

example r / n = 40%

p(0) = 0.4 0 * e –0.4 / 0! = .670

p(1) = 0.4 1 * e –0.4 / 1! = .268

p(2) = 0.4 2 * e –0.4 / 2! = .053

p(3) = 0.4 3 * e –0.4 / 3! = .007

p(4) = 0.4 4 * e –0.4 / 4! = .0007

p(5) = 0.4 5 * e –0.4 / 5! = .00006

SUM

 0.99876

Another example packing density

example r / n = 80%

p(0) = 0.8 0 * e –0.8 / 0! = .449

p(1) = 0.8 1 * e –0.8 / 1! = .359

p(2) = 0.8 2 * e –0.8 / 2! = .144

p(3) = 0.8 3 * e –0.8 / 3! = .038

p(4) = 0.8 4 * e –0.8 / 4! = .008

p(5) = 0.8 5 * e –0.8 / 5! = .001

SUM

 0.999

Given n = 1000

How many slots have no records assigned?

n * p(0) = 1000 * 0.449 = 449

How many slots have one exactly one record assigned?

n * p(1) = 1000 * 0.359 = 359

How many slots will have one record and at least one colliding record ?

n * [p(2) + p(3) + p(4) + p(5) + …] = 0.191

How many overflow record are expected?

1 * n * p(2) + 2 * n * p(3) + 3 * n * p(4) + 4 * n * p(5) + … =

n * [1 * p(2) + 2 * p(3) + 3 * p(4) + 4 * p(5) + …] =

1000 * [1 * 0.144 + 2 * 0.038 + 3 * 0.008 + 4 * 0.001 + …] = 1000 * [0.248]

248

What is the percent of overflow records?

248 / 1000 = 24.8 %

Multilevel Indexes and B-Trees

Simple Index – A simple index is a file which has two entries in it, a key of the data file and the offset to the record in that file.

	1000
	700

	1005
	300

	1010
	500

	1123
	900

	1223
	600

	1677
	400

	1899
	800

	1988
	0

	2324
	100

	2500
	200

Index File

Data File

key offset

	1988
	M
	12
	NY
	4
	qwe
	12.45
	blue
	erte

	2324
	M
	34
	CT
	5
	ert
	11.56
	green
	erter

	2500
	F
	56
	FL
	2
	dfg
	56.99
	red
	ert

	1005
	M
	7
	CA
	3
	tyu
	21.67
	green
	ert

	1677
	F
	21
	CT
	4
	ghj
	21.88
	blue
	ert

	1010
	F
	11
	NJ
	4
	tyu
	11.99
	black
	ert

	1223
	F
	12
	PA
	2
	bnm
	9.88
	yellow
	ert

	1000
	M
	45
	CT
	3
	hgj
	1.45
	red
	ert

	1899
	F
	88
	NY
	1
	kjl
	2.99
	gray
	ert

	1123
	M
	49
	CT
	5
	wfg
	3.50
	black
	rte

This simple example shows only 10 records. The key is stored in the index file along with an offset to the data file. Assuming that each data record is a fixed length of 100 bytes, key=1988 is at offset 0, key=1223 is at offset 600, etc..

This is an example of a simple index. It is a dense index, meaning that every record in the data file has an entry in the index file.

	1700
	1000

Adding a single data record (usually done at the end of a file) will force a new index record, likely in the middle of a file. For example adding a record with key=1700, requires a simple append in the data file, but it requires an index record

to be inserted between 1677 and 1899.

Multi-Level Indexes

Such indexes add depth to the a flat index

Each higher level is an index to the next level

Each higher level index is smaller then the next lower level

Dense Index – an index where every logical record has an entry in the index

Sparse Index – a fraction of logical records are in the index

Indexes are good at providing fast direct access to records

Less suited to sequential access

BF means a blocking factor. each block can contain a number of index entries. If that number is 20, then BF = 20.

If a block is size 2000 bytes, an index entry is size 10 bytes, a data record is size 100 bytes, then

BFindex = 200

BFdata = 20

This means that in a block we can store 200 index records or 20 data records. Since disk access is 1,000,000 times slower than memory access sequentially searching a data file would require reading 10 times as many blocks as reading the index file for the data records.

Assume:

BF = 1 for data file

BF = 100 for index file

Number of Logical Records = 1,000,000

Dense Index

 dense index

 (1,000,000 entries)

 1,000,000 records

Number of Data File Blocks = 1,000,000

Number of Index (3) Blocks = 10,000

Number of Index (2) Blocks = 100

Number of Index (1) Blocks = 1

Total Index Size = 10,101 blocks

Assume:

BF = 10 for data file

BF = 100 for index file

Number of Logical Records = 1,000,000

Sparse Index

 sparse index

 (100,000 entries)

Number of Data File Blocks = 100,000

Number of Index (3) Blocks = 1000

Number of Index (2) Blocks = 10

Number of Index (1) Blocks = 1

Total Index Size = 1,011 blocks

Given the data file grows to 80,000,000 records, the data file has 8,000,000 blocks, the index file grows to 80,000 + 800 + 8 + 1 (4 level depth). 5 disk accesses per record.

B-Trees (developed at Boeing in 1972) by Bayer and McCreight

improve on balanced binary trees binary search

~ 1024 nodes of a binary tree require ~ 9 disk accesses

B Trees are always balanced because they grow UP (not down as Binary, AVL, etc trees)

B-Tree order m

Root has minimum of 2 children, maximum of m children

Non-root node has CEILING (m / 2) children, maximum m children

Example: Use B-Tree order m = 3

Insert: K, F, G, Y, U, R, W, P, L, V, X, D

Insert(Y) : overfill the node, split in two, create new root

Insert(U)

Insert(R)

Insert(W and P) is trivial (goes into UY-node, goes into GR-node)

Insert(L)

Insert(L) … continued

Insert(V, X, D)

Delete (X)

simple, just remove it from the leaf node (keep it in the B-Tree)

Delete (G)

simple, remove it from leaf, BUT, modify the parent node since G was a maximum key in the node. Recurse up as long it is a maximum key in a parent node.

Delete (V) – distribute value from UV-node’ s sibling (W goes to left)

Delete (K)

We have too few children from L-node.

We can distribute LY-node PR-node

Delete (X)

Delete (X) … continued

RY-node cannot share any children. So we merge LR-node and Y-node

Now Y-root only has one child. Root is removed, and the only root child becomes the new root.

Extendible Hashing

Attempt to improve conventional hashing techniques, such as overflow areas, linked lists for overflow records, by increasing the address space of the hashtable as the number of elements to be stored greatly increases.

Conventional hashing has a fixed size space for storage allocated according to a density proportion based on the expected number of records to be stored.

Extendible Hashing can be applied when the number of records makes huge swings in size, and a proper size and density cannot be known ahead of time.

The approach is similar to a trie structure, which is a radix-based search tree of any base.

Base 26 search trie:

Each node has a set of radix pointers

In searching the trie, we may only need a potion of the key in the search

Radix = 2 is a common Extendible Hashing Approach

Basic Ideas:

1. Use buckets to hold groups of records

2. Define a directory structure to hold the addresses of the buckets

3. Use as little of the key as necessary to locate the record, and increase the key size as the storage space and record count go up

logical view

Next, we impose a full tree on the structure

Relative to the number of bits of the key to be used, n, the tree has a height of log2n, so a search would not execute in O(1) time. To solve the problem, we flatten the directory tree structure into a contiguous buffer

	00
	01
	10
	11

Growing the Address and Storage space. Suppose that bucket “A” is full.

Note that all 0x addresses are in “A”. We can split “A” into “A and “D” . We will still use 2 bits of the key to determine the storage bucket.

	00
	01
	10
	11

The records which were in “A” are now split into “A” and “D” so that all keys with “00” stay in “A” and all keys with “01” go to “D”

Note that the directory size is still the same.

What happens if “B” overflows?

	00
	01
	10
	11

All keys beginning with 10x have no more room in the bucket.

Now the directory structure will expand to use 3 bits of the key, so we will double the size of the directory.

	000
	001
	010
	011
	100
	101
	110
	111

Code examples

How to Create Bit addresses:

int hash (char * key) {

int sum = 0;

int len = strlen(key);

if (len % 2 == 1) len++;

for (int j = 0; j < len; j+= 2)

sum += (sum + 100 * key[j] + key[j+1]) % 19937;

return sum; }

int makeAddress (char * key, int depth) {

int retValue = 0;

int hashVal = hash(key);

for (int j = 0; j < depth; j++) {

retValue = retValue << 1;

int lobit = hashVal & 0x00000001;

retValue = retValue | lobit;

hashVal >>= 1; }

return retValue; }

Example (using code on previous page) :

hash(“bill”)

0000 0011 0110 1100

hash(“lee”)

0000 0100 0010 1000

hash(“mike”)

0000 0111 0100 1101

hash(“mark”)

0000 1010 0000 0111

hash(“allan”)

0100 1100 1010 0010

Example makeAddress (“mark”, 3)

retVal
 =
0000 0000 0000 0000

(retVal <<= 1)

lobit
=
0000 1010 0000 0111 &

0000 0000 0000 0001

(lobit = hashVal & 1)

retVal
=
0000 0000 0000 0000 |

0000 0000 0000 0001

(retVal = retVal | lobit) = 1

retVal
=
0000 0000 0000 0010

(retVal << = 1)

…….

3-bit address for “mark” = 111

3-bit address for “alan” = 010

Directory Splitting

Whenever the directory cannot accommodate a new bucket it is split and doubled in size.

Suppose “B” overflows:

	000
	001
	010
	011
	100
	101
	110
	111

We now need to use a 4-bit address

	0000
	0001
	0010
	0011
	0100
	0101
	1100
	0111
	1000
	1001
	1010
	1011
	1100
	1101
	1110
	1111

Deletion of records involves combining buckets and possibly decreasing the directory size.

Buddy buckets – two buckets so that the last bit distinguishes where the record is stored between 2 buckets

Above, “B” and “E” are buddy buckets. Each requires 4-bits of address and the last bit distinguishes between “B” and “E”

No other bucket requires 4-bits of address.

If either “B” or “E” are emptied, we must reduce the directory in half.

The directory size is reduced whenever the

If any other bucket is emptied, we need to consider the number of bits that the corresponding bucket uses.

bits used to determine storage bucket

	1
	1
	1
	1
	1
	1
	1
	1
	4
	4
	3
	3
	2
	2
	2
	2

	0000
	0001
	0010
	0011
	0100
	0101
	1100
	0111
	1000
	1001
	1010
	1011
	1100
	1101
	1110
	1111

Performance is O(1) because there is no overflow. Additional overhead results if the entire directory cannot fit into memory.

Expected data and file structure sizes

N - # buckets

b - bucket size

r - # records

N = r / (b ln2)

Example

b = 20
r = 1,000,000

N = 1,000,000 / (20 * ln2) = 72,135

b = 10
r = 1,000,000

N = 1,000,000 / (10 * ln2) = 144,270

b =2
r = 1,000,000

N = 1,000,000 / (2 * ln2) = 721,348

U - utilization (percent of available memory allocated to records which is actually used)

U = r / (b*N) = ln2 = .69

Estimated directory size (formula overestimates 2 to 4 times)

is approximately 4 / b * r (1 + 1 / b)

Example

r = 1,000,000

b = 5

b = 10

b = 20

12.7 * 106

1.6 * 106

0.4 * 106
111999

112333

…

112555

222

387

…

688

111233

112345

112555

230

238

…

387

100

101

…

222

387

230

101

222

112345

100

688

11666

…

112555

132

139

155

…

198

100

101

108

…

129

101233

103544

…

112555

112527

112536

112540

…

112555

111999

112333

…

112555

1345

2956

…

101233

111233

112345

…

112555

1402

1427

…

2956

129

198

…

1345

F	G	K

F	G	K	Y

G	Y

F	G	

K	Y	

G	Y

K	U	Y	

F	G	

U	Y	

K	R	

F	G

K	R	U	Y	

G	Y

F	G	

G	R	Y

K	P	R	

G	R	Y

F	G	

U	W	Y	

K	L	P	R	

U	W	Y	

G	R	Y

F	G	

P	R	

K	L	

F	G	

U	W	Y	

G	L	R	Y

U	W	Y	

R	Y	

G	L	

K	L	

F	G	

P	R	

L	Y	

W	X	Y	

U	V	

R	V	Y	

G	L	

L	Y	

P	R	

K	L	

D	F	G

W	X	Y	

U	V	

R	V	Y	

F	L	

L	Y	

P	R	

K	L	

D	F

X	Y	

U	W	

R	W	Y	

F	L	

L	Y	

P	R	

K	L	

D	F

U	W	

R	W	Y	

L	

L	Y	

P	R	

D	F	L

X	Y	

U	W	

R	W	Y	

F	L	

L	Y	

P	R	

L	

D	F

X	Y	

U	W	

P	R	

W	Y	

L	R

R	Y	

D	F	L

X	Y	

Y	

U	W	

W	Y	

L	R

R	Y	

P	R	

D	F	L

U	W	Y

Y	

L	R

R	Y	

P	R	

D	F	L

U	W	Y

Y	

P	R	

D	F	L

L	R	Y

dam

c..z pointers

ob

b

ill

bert

an

l

a

a b c d e f g h …….. z

1

0

1

0

B

A

C

0

1

0

1

C

B

A

1

0

A

C

B

D

A

B

C

A

C

B

B

C

D

A

B

C

D

A

E

C

D

B

A

