CS411- STRUTS NOTES

1

Contents

2Struts

21.
What is Struts?

22.
Advantages of using Struts

33.
Disadvantages of Struts

34.
What is Model-View-Controller (MVC) Architecture?

65.
What is Action Class?

65.1
Developing Action Class:

75.2 Understanding Action Class:

86.
What is ActionForm?

147.
Struts Tags Library

147.1
The Bean Tags

157.2
The HTML Tags

167.3
The Logic Tags

177.4
The Nested Tags

187.5
The Template Tags

187.6
Tiles Library Tags

198. Using NetBeans IDE for Struts application

198.1 Setting Up a Struts Application

198.2 Installing the Software

198.3 Creating a New Struts Application

228.3 Developing a Struts Application

228.3.1
Using Struts Custom Tag Libraries in a JSP Page

258.3.2
Using Struts to Validate a Field in a JSP Page

278.3.3
Using Struts to Navigate between JSP Pages

298.3.4
Building and Running the Struts Application

308.3.5
Adding More Functionality to the Struts Application

348.3.6
Using Struts to Add "Reset" Functionality

358.4
Struts Example:

Struts

1. What is Struts?

Struts Frame work is the implementation of Model-View-Controller (MVC) design pattern for the JSP. Struts is maintained as a part of Apache Jakarta project and is open source. Struts Framework is suited for the application of any size. Latest version of struts can be downloaded from http://jakarta.apache.org/. We are using jakarta-struts-1.1 and jakarta-tomcat-5.0.4 for this tutorial.

2. Advantages of using Struts

· Centralized File-Based Configuration.
Rather than hard-coding information into Java programs, many Struts values are represented in XML or property files. This loose coupling means that many changes can be made without modifying or recompiling Java code, and that wholesale changes can be made by editing a single file. This approach also lets Java and Web developers focus on their specific tasks (implementing business logic, presenting certain values to clients, etc.) without needing to know about the overall system layout.

· Form Beans.
In JSP, you can use property="*" with jsp:setProperty to automatically populate a JavaBean component based on incoming request parameters. Unfortunately, however, in the standard API this capability is unavailable to servlets, even though with MVC it is really servlets, not JSP pages, that should usually be the target of form submissions. Apache Struts extends this capability to Java code and adds in several useful utilities, all of which serve to greatly simplify the processing of request parameters.

· Bean Tags.
Apache Struts provides a set of custom JSP tags (bean:write, in particular) that let you easily output the properties of JavaBeans components. Basically, these are concise and powerful variations of the standard jsp:useBean and jsp:getProperty tags.

· HTML Tags.
Apache Struts provides a set of custom JSP tags to create HTML forms that are associated with JavaBeans components. This bean/form association serves two useful purposes:

· It lets you get initial form-field values from Java objects.

· It lets you redisplay forms with some or all previously entered values intact.

· Form Field Validation.
Apache Struts has builtin capabilities for checking that form values are in the required format. If values are missing or in an improper format, the form can be automatically redisplayed with error messages and with the previously entered values maintained.
 This validation can be performed on the server (in Java), or both on the server and on the client (in JavaScript).

· Consistent Approach.
Struts encourages consistent use of MVC throughout your application.

Now, if these advantages sound significant, they were meant to. But, before you rush out and convert all your existing projects to Struts, look at the disadvantages as well.

3. Disadvantages of Struts

Although Struts has a number of significant advantages over the standard servlet and JSP APIs alone, due to its complexity it has some serious drawbacks as well.

· Bigger Learning Curve.
To use MVC with the standard Request Dispatcher, you need to be comfortable with the standard JSP and servlet APIs. To use MVC with Struts, you have to be comfortable with the standard JSP and servlet APIs and a large and elaborate framework that is almost equal in size to the core system. This drawback is especially significant with smaller projects, near-term deadlines, and less experienced developers; you could spend as much time learning Struts as building your actual system.

· Worse Documentation.
Compared to the standard servlet and JSP APIs, Struts has fewer online resources, and many first-time users find the online Apache documentation confusing and poorly organized. There are also fewer books on Apache Struts than on standard servlets and JSP.

· Less Transparent.
With Struts applications, there is a lot more going on behind the scenes than with normal Java-based Web applications. As a result, Struts applications are:

· Harder to understand

· Harder to benchmark and optimize

· Rigid Approach.
The flip side of the benefit that Struts encourages a consistent approach to MVC is that Struts makes it difficult (but by no means impossible) to use other approaches.

4. What is Model-View-Controller (MVC) Architecture?

Model-View-Controller architecture is all about dividing application components into three different categories Model, View and the Controller. Components of the MVC architecture has unique responsibility and each component is independent of the other component. Changes in one component will have no or less impact on other component. Responsibilities of the components are:

Model: Model is responsible for providing the data from the database and saving the data into the data store. All the business logic are implemented in the Model. Data entered by the user through View are check in the model before saving into the database. Data access, Data validation and the data saving logic are part of Model.

View: View represents the user view of the application and is responsible for taking the input from the user, dispatching the request to the controller and then receiving response from the controller and displaying the result to the user. HTML, JSPs, Custom Tag Libraries and Resources files are the part of view component.

Controller: Controller is intermediary between Model and View. Controller is responsible for receiving the request from client. Once request is received from client it executes the appropriate business logic from the Model and then produce the output to the user using the View component. ActionServlet, Action, ActionForm and struts-config.xml are the part of Controller.

[image: image1.png]‘Structur of Struts Application

The class org.apache.struts.action.ActionServlet is the heart of the Struts Framework. It is the Controller part of the Struts Framework. ActionServlet is configured as Servlet in the web.xml file as shown in the following code snippets.

	<!-- Standard Action Servlet Configuration (with debugging) -->
<servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>
 <init-param>
 <param-name>debug</param-name>
 <param-value>2</param-value>
 </init-param>
 <init-param>
 <param-name>detail</param-name>
 <param-value>2</param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
</servlet>

This servlet is responsible for handing all the request for the Struts Framework, user can map the specific pattern of request to the ActionServlet. <servlet-mapping> tag in the web.xml file specifies the url pattern to be handled by the servlet. By default it is *.do, but it can be changed to anything. Following code form the web.xml file shows the mapping.

	<!-- Standard Action Servlet Mapping -->
<servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>*.do</url-pattern>
</servlet-mapping>

The above mapping maps all the requests ending with .do to the ActionServlet. ActionServlet uses the configuration defined in struts-config.xml file to decide the destination of the request. Action Mapping Definitions (described below) is used to map any action. For this lesson we will create Welcome.jsp file and map the "Welcome.do" request to this page.

Welcome.jsp
	<%@ taglib uri="/tags/struts-bean" prefix="bean" %>
<%@ taglib uri="/tags/struts-html" prefix="html" %>
<html:html locale="true">
<head>
 <title><bean:message key="welcome.title"/></title>
 <html:base/>
</head>
 <body bgcolor="white">
 <h3><bean:message key="welcome.heading"/></h3>
 <p><bean:message key="welcome.message"/></p>
</body>
</html:html>

Forwarding the Welcome.do request to Welcome.jsp
The "Action Mapping Definitions" is the most important part in the struts-config.xml. This section takes a form defined in the "Form Bean Definitions" section and maps it to an action class.

Following code under the <action-mappings> tag is used to forward the request to the Welcome.jsp.

	<action path="/Welcome"
 forward="/pages/Welcome.jsp"/>

To call this Welcome.jsp file we will use the following code.

	<html:link page="/Welcome.do">First Request to the controller</html:link>

Once the use clicks on on First Request to the controller link on the index page, request (for Welcome.do) is sent to the Controller and the controller forwards the request to Welcome.jsp. The content of Welcome.jsp is displayed to the user.

5. What is Action Class?

An Action class in the struts application extends Struts 'org.apache.struts.action.Action" Class. Action class acts as wrapper around the business logic and provides an inteface to the application's Model layer. It acts as glue between the View and Model layer. It also transfers the data from the view layer to the specific business process layer and finally returns the procssed data from business layer to the view layer.

An Action works as an adapter between the contents of an incoming HTTP request and the business logic that corresponds to it. Then the struts controller (ActionServlet) slects an appropriate Action and creates an instance if necessary, and finally calls execute method.

To use the Action, we need to Subclass and overwrite the execute() method. In the Action Class don't add the business process logic, instead move the database and business process logic to the process or dao layer.

The ActionServlet (commad) passes the parameterized class to Action Form using the execute() method. The return type of the execute method is ActionForward which is used by the Struts Framework to forward the request to the file as per the value of the returned ActionForward object.

5.1 Developing Action Class:

Action class (TestAction.java) is simple class that only forwards the TestAction.jsp. Action class returns the ActionForward called "testAction", which is defined in the struts-config.xml file (action mapping is show later in this page). Here is code of Action Class:

TestAction.java
	package raj;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.apache.struts.action.Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

public class TestAction extends Action
{
 public ActionForward execute(
 ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response) throws Exception{
 return mapping.findForward("testAction");
 }
}

	

5.2 Understanding Action Class:

Here is the signature of the Action Class.

public ActionForward execute(ActionMapping mapping, ActionForm form, javax.servlet.http.HttpServletRequest request, javax.servlet.http.HttpServletResponse response) throws java.lang.Exception

Action Class process the specified HTTP request, and create the corresponding HTTP response (or forward to another web component that will create it), with provision for handling exceptions thrown by the business logic. Return an ActionForward instance describing where and how control should be forwarded, or null if the response has already been completed.

[image: image2.png]

[image: image3.png]

Parameters:
mapping - The ActionMapping used to select this instance

form - The optional ActionForm bean for this request (if any)

request - The HTTP request we are processing

response - The HTTP response we are creating

Throws:

Action class throws java.lang.Exception - if the application business logic throws an exception

Adding the Action Mapping in the struts-config.xml
To test the application we will add a link in the index.jsp

<html:link page="/TestAction.do">Test the Action</html:link>
Following code under the <action-mappings> tag is used to for mapping the TestAction class.

	 <action

 path="/TestAction"

 type="raj.TestAction">

 <forward name="testAction" path="/pages/TestAction.jsp"/>

 </action>

To test the new application click on Test the Action link on the index page. The content of TestAction.jsp should be displayed on the user browser.

[image: image4.png]Fle Edt View Favortss Toos Help

| Chack - = - @ [0 4| Qsearch [ilrwvortes Giieda GF |
| Address [] htpiocahost aoejsrustutoriaTestactiondo] @G0 | Links

%7 -2 Feanwa []to- | v - »

This is TestActionjsp

NIE

[Eiome [[B o

6. What is ActionForm?
An ActionForm is a JavaBean that extends org.apache.struts.action.ActionForm. ActionForm maintains the session state for web application and the ActionForm object is automatically populated on the server side with data entered from a form on the client side.

We will first create the class AddressForm which extends the ActionForm class. Here is the code of the class:

AddressForm.java
	package raj;

import javax.servlet.http.HttpServletRequest;

import org.apache.struts.action.*;

/**
* @author rajeshwari gonwar

* @Web http://www.raj
*
*/

/**
 * Form bean for the Address Entry Screen.
 *
*/
public class AddressForm extends ActionForm
{
 private String name=null;
 private String address=null;
 private String emailAddress=null;

 public void setName(String name){
 this.name=name;
 }

 public String getName(){
 return this.name;
 }

 public void setAddress(String address){
 this.address=address;
 }

 public String getAddress(){
 return this.address;
 }

 public void setEmailAddress(String emailAddress){
 this.emailAddress=emailAddress;
 }

 public String getEmailAddress(){
 return this.emailAddress;
 }

 /**
 * Reset all properties to their default values.
 *
 * @param mapping The mapping used to select this instance
 * @param request The servlet request we are processing
 */
 public void reset(ActionMapping mapping, HttpServletRequest request) {
 this.name=null;
 this.address=null;
 this.emailAddress=null;
 }

 /**
 * Reset all properties to their default values.
 *
 * @param mapping The mapping used to select this instance
 * @param request The servlet request we are processing
 * @return errors
 */
 public ActionErrors validate(
 ActionMapping mapping, HttpServletRequest request) {
 ActionErrors errors = new ActionErrors();

 if(getName() == null || getName().length() < 1) {
 errors.add("name",new ActionMessage("error.name.required"));
 }
 if(getAddress() == null || getAddress().length() < 1) {
 errors.add("address",new ActionMessage("error.address.required"));
 }
 if(getEmailAddress() == null || getEmailAddress().length() < 1) {
 errors.add("emailaddress",new ActionMessage("error.emailaddress.required"));
 }

 return errors;
 }

}

[image: image5.png]

[image: image6.png]

The above class populates the Address Form data and validates it. The validate() method is used to validate the inputs. If any or all of the fields on the form are blank, error messages are added to the ActionMapping object. Note that we are using ActionMessage class, ActionError is now deprecated and will be removed in next version.

Now we will create the Action class which is the model part of the application. Action class simply forwards the request the Success.jsp. Here is the code of the AddressAction class:

AddressAction.java
	package raj;

/**
* @author Rajeshwari gonwar
* @Web http://www.raj
*
*/

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.apache.struts.action.Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

public class AddressAction extends Action
{
 public ActionForward execute(
 ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response) throws Exception{
 return mapping.findForward("success");
 }
}

	

Now create an entry for form bean in the struts-config.xml. Add the following lines in the struts-config.xml file:

<form-bean
name="AddressForm"
type="raj.AddressForm"/>

Add the following line in the struts-config.xml file for handling the action "/Address.do":

<action
 path="/Address"
 type="raj.AddressAction"
 name="AddressForm"
 scope="request"
 validate="true"
 input="/pages/Address.jsp">
 <forward name="success" path="/pages/success.jsp"/>
</action>

Now create Address.jsp, which is our form for entering the address details. Code for Address.jsp is as follows:

Address.jsp
	 <%@ taglib uri="/tags/struts-bean" prefix="bean" %>

 <%@ taglib uri="/tags/struts-html" prefix="html" %>

 <html:html locale="true">

 <head>

 <title><bean:message key="welcome.title"/></title>

 <html:base/>

 </head>

 <body bgcolor="white">

 <html:form action="/Address">

 <html:errors/>

 <table>

 <tr>

 <td align="center" colspan="2">

Please Enter the Following Details

</tr>

<tr>

 <td align="right">

 Name

 </td>

 <td align="left">

 <html:text property="name" size="30" maxlength="30"/>

 </td>

 </tr>

 <tr>

 <td align="right">

 Address

 </td>

 <td align="left">

 <html:text property="address" size="30" maxlength="30"/>

 </td>

 </tr>

 <tr>

 <td align="right">

 E-mail address

 </td>

 <td align="left">

 <html:text property="emailAddress" size="30" maxlength="30"/>

 </td>

 </tr>

<tr>

 <td align="right">

 <html:submit>Save</html:submit>

 </td>

 <td align="left">

 <html:cancel>Cancel</html:cancel>

 </td>

 </tr>

 </table>

 </html:form>

 </body>

 </html:html>

User enter the values in the form and click on the submit form. Form validation is done on the server side and error message is displays on the jsp page. To display the error on the jsp page <html:errors/> tag is used. The <html:errors/> tag displays all the errors in one go. To create text box <html:text .../> is used in jsp page.

e.g.

<html:text property="address" size="30" maxlength="30"/>
Above tag creates text box for entering the address. The address is retrieved from and later stored in the property named address in the form-bean. The tag <html:submit>Save</html:submit> creates the submit button and the tag <html:cancel>Cancel</html:cancel> is used to create the Cancel button.

Add the following line in the index.jsp to create a link for testing the Address.jsp form:

<html:link page="/pages/Address.jsp">Test the Address Form</html:link>
Build the application and click on the Test the Address Form link on the index page to test the newly created screen. You should see the following screen.

[image: image7.png]Address [€) http:localhost:a080/strutstutorialjpages/Address.jsp

Please Enter the Following Details

MName

Address

E-mai address

Save | Cancel

In this lesson you learned how to create data entry form using struts, validate and finally send process the business logic in the model part of the struts.

7. Struts Tags Library
7.1 The Bean Tags

The Tags within the Bean Library are used for creating and accessing JavaBeans and a few other general purpose uses. Although these tags work with any standard JavaBean, they are often used with Objects that extend the Struts ActionForm class. Table 1 lists the tags within the Bean Library.

Table 1. Tags within the Struts Bean Tag Library
	Tag Name
	Description

	cookie
	Define a scripting variable based on the value(s) of the specified request cookie.

	define
	Define a scripting variable based on the value(s) of the specified bean property.

	header
	Define a scripting variable based on the value(s) of the specified request header.

	include
	Load the response from a dynamic application request and make it available as a bean.

	message
	Render an internationalized message string to the response.

	page
	Expose a specified item from the page context as a bean.

	parameter
	Define a scripting variable based on the value(s) of the specified request parameter.

	resource
	Load a web application resource and make it available as a bean.

	size
	Define a bean containing the number of elements in a Collection or Map.

	struts
	Expose a named Struts internal configuration object as a bean.

	write
	Render the value of the specified bean property to the current JspWriter.

Two of the most often used Tags from Table 1 are the message and write Tags.

7.2 The HTML Tags

The Tags within the Struts HTML Tag Library are used to create input forms for your application. There are also a few other useful Tags used in the creation and rendering of HTML-based user interfaces. The Tags included within the HTML Library are shown in Table 2.

Table 2. Tags within the Struts HTML Tag Library
	Tag Name
	Description

	base
	Render an HTML <base> Element

	button
	Render a Button Input Field

	cancel
	Render a Cancel Button

	checkbox
	Render a Checkbox Input Field

	errors
	Conditionally display a set of accumulated error messages

	file
	Render a File Select Input Field

	form
	Define an Input Form

	frame
	Render an HTML frame element

	hidden
	Render a Hidden Field

	html
	Render an HTML <html> Element

	image
	Render an input tag of type "image"

	img
	Render an HTML img tag

	javascript
	Render JavaScript validation based on the validation rules loaded by the ValidatorPlugIn

	link
	Render an HTML anchor or hyperlink

	messages
	Conditionally display a set of accumulated messages

	multibox
	Render a Checkbox Input Field

	option
	Render a Select Option

	options
	Render a Collection of Select Options

	optionsCollection
	Render a Collection of Select Options

	password
	Render a Password Input Field

	radio
	Render a Radio Button Input Field

	reset
	Render a Reset Button Input Field

	rewrite
	Render an URI

	select
	Render a Select Element

	submit
	Render a Submit Button

	text
	Render an Input Field of Type text

	textarea
	Render a Textarea Field

	xhtml
	Render HTML tags as XHTML

Most all of the Tags within the HTML Tag library must be nested within the Struts Form Tag.

7.3 The Logic Tags

The Logic Tag Library contains tags that are helpful with iterating through collections, conditional generation of output, and application flow. Table 3 lists the Tags within the Logic Library.

Table 3. Tags within the Struts Logic Tag Library
	Tag Name
	Description

	empty
	Evaluate the nested body content of this tag if the requested variable is either null or an empty string.

	equal
	Evaluate the nested body content of this tag if the requested variable is equal to the specified value.

	forward
	Forward control to the page specified by the specified ActionForward entry.

	greaterEqual
	Evaluate the nested body content of this tag if the requested variable is greater than or equal to the specified value.

	greaterThan
	Evaluate the nested body content of this tag if the requested variable is greater than the specified value.

	iterate
	Repeat the nested body content of this tag over a specified collection.

	lessEqual
	Evaluate the nested body content of this tag if the requested variable is greater than or equal to the specified value.

	lessThan
	Evaluate the nested body content of this tag if the requested variable is less than the specified value.

	match
	Evaluate the nested body content of this tag if the specified value is an appropriate substring of the requested variable.

	messagesNotPresent
	Generate the nested body content of this tag if the specified message is not present in this request.

	messagesPresent
	Generate the nested body content of this tag if the specified message is present in this request.

	notEmpty
	Evaluate the nested body content of this tag if the requested variable is neither null, nor an empty string, nor an empty java.util.Collection (tested by the .isEmpty() method on the java.util.Collection interface).

	notEqual
	Evaluate the nested body content of this tag if the requested variable is not equal to the specified value.

	notMatch
	Evaluate the nested body content of this tag if the specified value is not an appropriate substring of the requested variable.

	notPresent
	Generate the nested body content of this tag if the specified value is not present in this request.

	present
	Generate the nested body content of this tag if the specified value is present in this request.

	redirect
	Render an HTTP Redirect.

7.4 The Nested Tags

The Nested Tags were added to Struts during development of the 1.1 release. They extend the existing Tags functionality by allowing the Tags to relate to each other is a nested fashion. This is most useful when dealing with Object graphs.

The Nested Tags don't add any additional functionality over the Struts standard Tags other than to support the nested approach. For each Tag in the Bean, HTML, and Logic libraries, there is an equivalent nested Tag.

7.5 The Template Tags

The Template Tag Library was created to reduce the redundancy found in most web applications. In most web sites, there are sections within multiple pages that are exactly the same. The header, menus, or footers are three obvious examples. Instead of duplicating the content in each page and having to modify all pages when something like the look and feel changes, Templates allow you to have the common content in one place and insert it where necessary.

However, since the Tiles framework was introduced, the Template Tags have been deprecated and developers are encouraged to use Tiles.

7.6 Tiles Library Tags

As mentioned earlier, the Tiles framework is now integrated into the core Struts framework. Tiles is similar to the Template Tags except that it adds much more functionality and flexibility. For instance, Tiles supports inheritance between Tiles and allows you to define layouts and reuse those layouts within your site. They also support different Tiles and layouts based on I18N and channel. The Tags with the Tiles Library are shown in Table 4.

Table 4. Tags within the Struts Tiles Tag Library
	Tag Name
	Description

	add
	Add an element to the surrounding list. Equivalent to 'put', but for list element.

	definition
	Create a tile/component/template definition bean.

	get
	Gets the content from request scope that was put there by a put tag.

	getAsString
	Render the value of the specified tile/component/template attribute to the current JspWriter.

	importAttribute
	Import Tile's attribute in specified context.

	initComponentDefinitions
	Initialize Tile/Component definitions factory.

	insert
	Insert a tiles/component/template.

	put
	Put an attribute into tile/component/template context.

	putList
	Declare a list that will be pass as attribute to tile.

	useAttribute
	Use attribute value inside page.

8. Using NetBeans IDE for Struts application

 8.1 Setting Up a Struts Application

Before you start writing code, you have to make sure you have all of the necessary software and that your project is set up correctly.

 8.2 Installing the Software

Before you begin, you need to install the following software on your computer:

· NetBeans IDE 5.x (download).

· Java Standard Development Kit (JDK™) version 1.4.2 (download) or 5.0 (download)

 Optionally, you can download and use the Sun Java System (SJS) Application Server Platform Edition, JBoss, or WebLogic. However, the Tomcat Web Server that is bundled with the IDE provides all the support you need for two-tier web applications such as the one described in this quick start guide. An application server (such as the SJS Application Server, JBoss, or WebLogic) is only required when you want to develop enterprise applications.

8.3 Creating a New Struts Application

In the IDE, a "Struts application" is nothing more than a normal web application accompanied by the Struts libraries and configuration files. You create a Struts application in the same way as you create any other web application in the IDE, with the additional step of indicating that you want the Struts libraries and configuration files to be included in your application.

1. Choose File > New Project. Under Categories, select Web. Under Projects, select Web Application and click Next.

2. In the Name and Location panel, do the following:

· Under Project Name, enter LoginPage.

· Change the Project Location to any directory on your computer. From now on, this directory is referred to as $PROJECTHOME.

· Select the recommendations to which your source structure will adhere, which is purely a personal preference:

· Java BluePrints. For more information, see http://java.sun.com/blueprints/code/projectconventions.html.

· Jakarta. For more information, see http://jakarta.apache.org/tomcat/tomcat-5.0-doc/.

· Select the server to which you want to deploy your application. Only servers that are registered with the IDE are listed. (To register a server, go to Tools > Server Manager.)

· Notice that the Context Path is /LoginPage.

3. Click Next.

4. In the Frameworks panel, select Struts 1.2.7 (if you are using NetBeans IDE 5.5., the supported Struts version is 1.2.9):

[image: image8.png]New Web Application

Steps. Frameworks
[e—r— r—

2. N andcation

3 Fromeworks [3ovasener ces 1.1

Corture stuts 127

froo =

o myapp st pplcaeRosace

Do not change any of the values in the lower section of this panel. They serve the following purposes:

· Action Servlet Name. Hardcoded specification of the name of the servlet entry for the Struts action servlet. The web.xml deployment descriptor contains a servlet entry for the action servlet, specifying the appropriate Struts specific parameters, such as the name of the servlet class and the path to the struts-config.xml configuration file.

· Action URL Pattern. Allows the appropriate patterns which should be mapped to the Struts action controller to be specified. This generates a corresponding web.xml servlet mapping entry to map the specified URI pattern to the action servlet. By default, only the *.do pattern is mapped.

· Application Resource. Lets you specify the resource bundle which will be used in the struts-config.xml file for localizing messages. By default, this is com.myapp.struts.ApplicationResource.

· Add Struts TLDs. Lets you generate tag library descriptors for the Struts tag libraries. A tag library descriptor is an XML document which contains additional information about the entire tag library as well as each individual tag. In general, this is not necessary, because you can refer to on-line URIs rather than local TLD files.

5. Click Finish.

The IDE creates the $PROJECTHOME/LoginPage project folder in your filesystem. As with any web application in the IDE, the project folder contains all of your sources and the IDE's project metadata, such as the Ant build script. However, in addition, your web application has all of the Struts libraries on its classpath. Not only are they on the application's classpath, but they are included in the project and will be packaged with it when you build it later in this quick start guide.

The LoginPage project opens in the IDE. You can view its logical structure in the Projects window and its file structure in the Files window. For example, the Projects window should now look as follows:

[image: image9.png]Projects.
=0
= Wabpages
-0 e
o0 v
B rdecso
5 wekomesiutz
& G Wabseeas
= G oruotnies
) st
0 coneem
3 gl
) testeomt
3 vl
) v ieromd
i bt
@ SoverRezurcar
=B soarce P
Pepm—"—
[o ——
56D Ten Poctaes
= gree
B snts .27 s
B Suts1.27 - comons et
R R————
B Suts 1,27 convons o
B St 127 comons g
B Snte 127 conmonssidon s
e —
FE "
B 1.5 00t
o 2 Burdod ot 559)
&G Tontbears

Files. Runtime.

PETFOTETE

In the Configuration Files node, the application includes all the Struts-specific configuration files, of which struts-config.xml is the most important. You will use this configuration file throughout this quick start guide. Also in the Configuration Files node, to handle Struts processing, the Struts servlet (i.e., the controller in the MVC paradigm) is mapped in the web.xml deployment descriptor:

<servlet>

 <servlet-name>action</servlet-name>

 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>

 <init-param>

 <param-name>config</param-name>

 <param-value>/WEB-INF/struts-config.xml</param-value>

 </init-param>

 <init-param>

 <param-name>debug</param-name>

 <param-value>2</param-value>

 </init-param>

 <init-param>

 <param-name>detail</param-name>

 <param-value>2</param-value>

 </init-param>

 <load-on-startup>2</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>action</servlet-name>

 <url-pattern>*.do</url-pattern>

</servlet-mapping>

Above, the Struts servlet (org.apache.struts.action.ActionServlet) is specified as the servlet that will control all requests for the mapping .do. In addition, the web.xml file specifies that the Struts servlet is configured by means of the struts-config.xml file that is found in the WEB-INF folder.

8.3 Developing a Struts Application

Developing a Struts application is similar to developing any other kind of web application in the IDE. You use components such as JSP pages, servlets, listeners, and filters. However, you complement your web development toolkit by using the facilities provided by Struts via the IDE. For example, you use templates in the IDE to create Struts action classes and Struts actionform bean classes. On top of that, the IDE automatically registers these classes in the struts-config.xml file and lets you extend this file very easily via menu items in the Source Editor's pop-up menu.

8.3.1 Using Struts Custom Tag Libraries in a JSP Page

Many web applications use JavaServer Pages (JSP) for the view in the MVC paradigm, so Struts provides custom tag libraries which facilitate interaction with HTML forms. These can very easily and smoothly be set up and used in a JSP page in the IDE.

1. Right-click the LoginPage project node, choose New > JSP, and call the new JSP page loginForm. Click Finish.

2. In the Source Editor, change the default content of the <H1> tag to Login Form and do the same for the text in the <TITLE> tags.

3. Copy these first two taglib directives from the welcomeStruts.jsp file to the top of your new loginForm.jsp file:

4. <%@ taglib uri="http://jakarta.apache.org/struts/tags-bean" prefix="bean" %>

5. <%@ taglib uri="http://jakarta.apache.org/struts/tags-html" prefix="html" %>

6. In loginForm.jsp, below the <H1> tags, add the following:

7. <html:form action="login">

8. <html:submit value="Login" />

9. </html:form>

10. Notice that when you type the Struts tags, the IDE helps you by suggesting different ways of completing the code that you're typing, and further helps you by providing Struts Javadoc:

[image: image10.png]M.tpi//1ava. sun. com/1sm/)stl fcore" prefix="c's

B ity i
imbimace>
nacrirs | <hmkimat> 4,01 Transicionat /o
ST T bt
ey o] el >
. prrarundOing
bt
“heads <htmoption>
aace { Sembootion> concenta"cext/meal chacseraUTE-8">
<LLLLE chtmboptionsCollection>
s> | it
Gom | Sambvadr
Suntresrs
<histod Dimbremmitel>
imbeaiects
e TR »
Simirest> ol
vt :pumit value="Login” />
XY |
P

‘submit - Render A Submit Button

<otr
L2 s <rut ettt b
AR R
Attt Descrpton
oty oot ke sty s, 57
"

The skt et fr ths nent
FTEw)

S Tho mesage esousces oy ofthe atemate et for s alenert.

ity il

Whenever you finish typing in the Source Editor, you can neaten the code by right-clicking in the Source Editor and choosing Reformat Code:

[image: image11.png]<hilogin Form/nl>
Qtms torm sotsonrLogiss

At it value="Login

@t B
- seectn 5
o funrie ey

This exanple uses 3T viewServet

11. In the Component Palette on the right side of the Source Editor, within the HTML section, drag the Table item to just above the <html:submit value="Login" /> line. The Insert Table dialog box pops up. Set both the Rows and Columns to 1, so that you'll create a table consisting of one row and one column. Click OK.

The loginForm.jsp now looks as follows:

<html:form action="login">

 <table border="1">

 <thead>

 <tr>

 <th></th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td></td>

 </tr>

 </tbody>

 </table>

 <html:submit value="Login" />

</html:form>

12. In between the <TH> tags, type the following:

<bean:message key="login.name" />

In between the <TD> tags, type the following:

<html:text property="name" />

The body of loginForm.jsp is now as follows:

[image: image12.png]<body>
login Forac/nl>
Atn: torm scrsonrlogin’

<eable border="1">

<ot beancmessage Key="loginnane’ £</th>
<o
</tnea
<evoap>
R R —
<o
</evoay
<rante
st value=Login £
<nemn: torm>

</oay>

13. In the Projects window, expand the Source Packages node, expand the com.myapp.struts node, and double-click the ApplicationResource.properties file so that it opens in the Source Editor. Add login.name as a key, anywhere in the ApplicationResource.properties file, and add a meaningful message. For example: login.name=Name

8.3.2 Using Struts to Validate a Field in a JSP Page

A Struts "actionform bean" class represents data shared between the view (in this case, a JSP page) and the Struts action class. An actionform bean class is available both for populating the view and for providing input to an action class. An actioform bean class also has a validate method to allow input mapped from the view to be verified.

1. Right-click the LoginPage project node and choose New > File/Folder. In the Web category choose Struts ActionForm Bean and click Next. Notice that your actionform bean class will be called "NewStrutsActionForm". Leave the default name for purposes of this tutorial. In a real application, you would give your actionform bean class a new, meaningful name. Select com.myapp.struts in the Package drop-down list and click Finish.

The actionform bean class opens in the Source Editor. By default, the IDE provides it with a String called name and an int called number. Both fields also have getters and setters defined for them.

2. Open struts-config.xml in the Source Editor and note that it contains, among other things, the following:

3. <form-beans>

4. <form-bean name="NewStrutsActionForm" type="com.myapp.struts.NewStrutsActionForm"/>

</form-beans>

Hold down the Ctrl key and move your mouse over the actionform bean class's fully qualified class name:

[image: image13.png]<Pl version="1.0" encoding="130-0859-1" 7>

“-//Apache Softuace Foundstion//DTD Serucs Configueation 1.2//EN"

T(-mcm struts-contiy PBLIC
contig 1 2.dca">

[y ————

pR—
<toru-beans>

Nevserucshctionfora® type

</tom-beans>

A hyperlink appears. Click it to navigate to the actionform bean class.

5. Now browse through the actionform bean class in the Source Editor. Look at the validate method that the IDE created for you:

6. public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {

7. ActionErrors errors = new ActionErrors();

8. if (getName() == null || getName().length() < 1) {

9. errors.add("name", new ActionMessage("error.name.required"));

10. // TODO: add 'error.name.required' key to your resources

11. }

12. return errors;

 }

Notice that the field called name is validated by default. If validation fails, which happens when no name is entered in the JSP page, a message that is identified by error.name.required is returned.

13. Following the TODO instruction that the IDE put in the validate method for you, add error.name.required as a key to the ApplicationResource.properties file and add a meaningful message. For example:

error.name.required=Enter a name!

At the top of the file, to customize the formatting of your error message, change the first four keys to the following:

errors.header=

errors.prefix=

errors.suffix=

errors.footer=

14. Specify where you want the error message to be rendered, by adding the following line in loginForm.jsp, right above the closing </html:form> tag:

<html:errors />

8.3.3 Using Struts to Navigate between JSP Pages

A Struts "action" class is executed in response to a user request and commonly interacts with the model through a business delegate. The responsibility of an action class is to provide navigation and forward control to the appropriate view.

1. Right-click the LoginPage project node and choose New > File/Folder. In the Web category choose Struts Action and click Next.

2. In the Name and Location panel, notice that your action class will be called "NewStrutsAction". Leave the default name for purposes of this tutorial. In a real application, you would give your action class a new, meaningful name.

3. Select com.myapp.struts in the Package drop-down list.

4. Type login in Action Path (the content of Action Path is therefore now /login). Click Next.

5. In ActionForm Bean, Parameter, notice that the IDE suggests that you associate the action class with the actionform bean class that you created in the previous step. In Input Resource, browse to your loginForm.jsp page. Click Finish.

6. Open struts-config.xml in the Source Editor and note that it contains, among other things, the following:

7. <action-mappings>

8. <action input="/loginForm.jsp"

9. name="NewStrutsActionForm"

10. path="/login"

11. scope="session"

12. type="com.myapp.struts.NewStrutsAction"/>

13. <action path="/Welcome"

14. forward="/welcomeStruts.jsp"/>

</action-mappings>

If you want the action class to function per request, instead of per session, put the cursor in the scope attribute and press Ctrl-Space:

[image: image14.png]Result o *
equest

“/login" scope=

Choose Request.

15. old down the Ctrl key and move your mouse over the action class's fully qualified class name:

[image: image15.png]22 <action-mappings>

2 <action Anpucs" /LoginFors. 5" neke="NeUSLEULACTLCNFOLA" pathe"/ogin SCape="Sesean’ Lype="CoRAyapp.struts. euStrUtsACEan"/>
2 <action pache"/Uelcone” forvarde”/velconeStrucs. 15"/

8| </actionnappings

A hyperlink appears. Click it to navigate to the action class.

16. Browse through the action class and look at the execute method:

17. public ActionForward execute(ActionMapping mapping, ActionForm form,

18. HttpServletRequest request, HttpServletResponse response)

19. throws Exception {

20. return mapping.findForward(SUCCESS);}

Notice the definition of SUCCESS, at the top of the NewStrutsAction:

private final static String SUCCESS = "success";

The SUCCESS String declaration specifies that this action class forwards to the output view called success.

21 You need to define a page that will be displayed when the output view above is called. So, create another JSP in the same location as loginForm.jsp and call it loginSuccessful. In the Source Editor, change the default content of the <H1> tags in the new JSP files to Login Successful! and do the same for the text in the <TITLE> tags.

22. Open struts-config.xml in the Source Editor, right-click anywhere in the /login action mapping, and choose Struts > Add Forward:

[image: image16.png]<action-nappings>
<action inpucs" /1oy
<action pach-"/Welcos

</sction-nappings>

<eonerolier processorciad

<aessage-resources pazen

Thts plugin tnicistize T

i nien
Seean b A Forwrdncde Acton
Eraar
Vadte o aksshitsra | AddBuceten
Reforms Code Cufsshitsr | Add ActaoForm ean

dd AceFom esn Propery

pae v

Tes ¥ huts acer can caxes sone

The Add Forward dialog box opens.

Type success in Forward Name. Browse to loginSuccessful.jsp in Resource File. The dialog box should now look as follows:

[image: image17.png]£1Add Forward

Fowarthne: [sm
e
[
O Action: Jlogn
Qe

Lot
Ol

©aan o 3

Click Add.

Notice that struts-config.xml now shows the following (the new code is in bold):

<action-mappings>

 <action input="/loginForm.jsp"

 name="NewStrutsActionForm"

 path="/login"

 scope="session"

 type="com.myapp.struts.NewStrutsAction">

 <forward name="success"

 path="/loginSuccessful.jsp"/>
 </action>

 <action path="/Welcome"

 forward="/welcomeStruts.jsp"/>

</action-mappings>

8.3.4 Building and Running the Struts Application

The IDE uses an Ant build script to build and run your web application. The IDE generated the build script when you created the application, basing it on the options you entered in the New Project wizard and the project's Project Properties dialog box.

1. Right-click the LoginPage project node and choose Properties. In the Project Properties dialog box, click the Run node. In Relative URL, type login.do. Click OK.

Note: Remember that at the start of this quick start guide, you mapped the .do mapping to the Struts controller servlet. Now, when you run the application and the .do mapping is used, the Struts controller servlet knows that it has to handle the request.

2. Choose Run > Run Main Project (F6) from the Run menu.

The IDE builds the web application and deploys it, using the server you specified when creating the project.

The browser opens and displays the loginForm.jsp page:

[image: image18.png]L He £t Yow Go fodkmaic Iok wndow teb
STy

&) S Logn Form.

Login Form

o

Login] Eeter a namel

Only if field-level validation succeeds, so that the action class's execute method returns the SUCCESS output view, does Struts call the loginsuccesful.jsp page. To pass validation, all that you need to do is add any value to the Name row in the loginForm.jsp page. Then, loginSuccessful.jsp is displayed:

[image: image19.png]Fo E Yow So fookmats Los Vindon beb

[toom scesst |

Login Successful!

Of course, as pointed out at the start of this quick start guide, this is not a complete login form; it merely shows you what the basis of such a form could look like in Struts. The following section shows you how quickly and easily the login form can be extended with a variety of standard functionality.

8.3.5 Adding More Functionality to the Struts Application

Struts simplifies and organizes an application in many more ways than can be listed here. However, here are some simple extensions to your existing login page, using Struts.

Using Struts to Add "Cancel" Functionality

1. In loginForm.jsp, below the <html:submit> line, create the Cancel button by adding the following:

<html:cancel />

2. Add these lines to the execute method in org.myapp.struts.NewStrutsAction:

3. if (isCancelled(request)){

4. return mapping.findForward(CANCEL);

}

Press Ctrl-Space within the isCancelled method and then read the Javadoc to understand the method:

[image: image20.png]foca” [———

T T ——

L=l]
orgapache struts.action.Action

pronected booiean oCancelled (3avas. serviee heep HeepServiechequese ra:

Retuns teue e curen i cancel o was prssed. This thod wl check he
LobalLs. CANCEL KETroqest arotshasbean s, whihrermaly occurs the carcel
uton enrted b CancelTog wespressed by th user nthe curet rest I e,

valdation paforned by an ActonForm's valdace) metod wilhav been sppedby
e cntolr vt

Parameters:
e ueat - Theseve recuest e e processing
See Al

CancelTaq

Declare the definition of CANCEL at the top of the NewStrutsAction class, right below the definition of SUCCESS:

private final static String CANCEL = "cancel";

5. You need to define a page that will be displayed when CANCEL is called. So, create another JSP in the same location as loginForm.jsp and call it loginCancel. In the Source Editor, change the default content of the <H1> tags in the new JSP files to Login Cancelled! and do the same for the text in the <TITLE> tags.

6. Open struts-config.xml in the Source Editor, right-click anywhere in the /login action mapping, and choose Struts > Add Forward. The Add Forward dialog box opens.

Type cancel in Forward Name. Browse to loginCancel.jsp in Resource File. The dialog box should now look as follows:

[image: image21.png]£1Add Forward

Forwardtone: [coed

Forward To:

© Resurce i | oarcancl
O haen: foon

DRedeeet

Lot
Ol

© et o v

Click Add.

Notice that struts-config.xml now shows the following (the new code is in bold):

<action-mappings>

 <action input="/loginForm.jsp"

 name="NewStrutsActionForm"

 path="/login"

 scope="session"

 type="com.myapp.struts.NewStrutsAction">

 <forward name="success"

path="/loginSuccessful.jsp"/>

 <forward name="cancel"

 path="/loginCancel.jsp"/>
 </action>

 <action path="/Welcome"

 forward="/welcomeStruts.jsp"/>

</action-mappings>

Note: In Struts 1.2.9 and 1.3, note the changes for cancellation, as described here.

7. Run the application again and notice the new Cancel button:

[image: image22.png]Eo Et Yo Go o Tocs indon

< LognFom.

Login Form

Click it and notice that the new loginCancel.jsp page is opened in the browser.

Using Struts to Add "Logout" Functionality

1. In loginForm.jsp, below the <H1> tags, create the Logout link by adding the following:

<html:link action="/logout">Logout</html:link>

2. You need to define a page that will be displayed when the Logout link is clicked. So, create another JSP in the same location as loginForm.jsp and call it loginOut. In the Source Editor, change the default content of the <H1> tags in the new JSP files to Have a Nice Day! and do the same for the text in the <TITLE> tags.

3. Open struts-config.xml in the Source Editor, right-click anywhere, and choose Struts > Add Forward/Include Action. The Add Forward/Include Action dialog box opens.

Type logout in Action Path. Browse to loginOut.jsp in Resource File. The dialog box should now look as follows:

[image: image23.png]£1Add Forward/include Action

=

oot s

Click Add.

Notice that struts-config.xml now shows the following (the new code is in bold):

<action-mappings>

 <action input="/loginForm.jsp"

 name="NewStrutsActionForm"

 path="/login"

 scope="session"

 type="com.myapp.struts.NewStrutsAction">

 <forward name="success"

path="/loginSuccessful.jsp"/>

 <forward name="cancel"

 path="/loginCancel.jsp"/>

 </action>

 <action forward="/loginOut.jsp"

 path="/logout"/>
 <action path="/Welcome"

 forward="/welcomeStruts.jsp"/>

</action-mappings>

4. Run the application again and notice the new Logout link:

[image: image24.png]Login Form - Netscape.

Fe £ Yew G Dodmals Toos Wrdbw o
Sl

[T wnrom L

Login Form

Eater anamel

Click it and notice that the new loginOut.jsp page is opened in the browser.

8.3.6 Using Struts to Add "Reset" Functionality

1. In loginForm.jsp, between the Submit and Cancel buttons, create the Reset button by adding the following:

<html:reset />

2. Run the application again and notice the new Reset button:

[image: image25.png]Ee E Mew So folmats Iods Wndow b

(B[S |

Login Form

Cancel] Enter a name|

Type something in the Name row, click Reset, and notice that Struts empties the table.

8.4 Struts Example:

File Upload Example

Here you will learn how to use Struts to write program to upload files. The interface org.apache.struts.upload.FormFile is the heart of the struts file upload application. This interface represents a file that has been uploaded by a client. It is the only interface or class in upload package which is typically referenced directly by a Struts application.

· Create a project by going to File(New Project(choose web application) and go next.

Fill out all the fields as shown in below figure and click on next:

[image: image26.png]New Web Application

Name and Location

Steps

1

2

B

Choase Project
Name and Lacation
Frameworks

Project tae:

Project Location;

Project Folder:

[FieUpioad

[CriDocuments and settings Rajkart

[C:ADocuments and Settings Rajkart FieUpload

Browse,

Source structure:

o st gl [

Server
Java EE Version

Context Path:

Recommendation: Source Level 1.4 should be used n J2EE 1.4 projects.
T Set Source Levelto 1.4

[Set as Main Project

undled Tomeat (5.5.17) <] anage
eeeis <]
[Fietpioad

<Back

Enish

Cancel

Help

· Check the struts 1.2.9 as your framework and click on finish button to create the project.

For this project you will have to need 2 jsp pages - FileUpload.jsp and UploadSuccess.jsp ,a form bean - StrutsUploadForm.java and an action- StrutsUploadAction.java.

Note: When we create the project by default we will have index.jsp and WelcomeStruts.jsp. You can get rid of the second jsp page.In the index.jsp link the uploadfile.jsp.

Developing jsp page

Create a jsp page known as FileUpload.jsp and paste the below code in the page.

Make sure you include the 2 tag libraries in all the jsp files.

<%@ taglib uri="http://jakarta.apache.org/struts/tags-bean" prefix="bean" %>

<%@ taglib uri="http://jakarta.apache.org/struts/tags-html" prefix="html" %>

	<%@ taglib uri="/tags/struts-bean" prefix="bean" %>
<%@ taglib uri="/tags/struts-html" prefix="html" %>

<html:html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>Upload JSP Page</title>

 </head>

 <body>

 <html:form action="/fileupload.do" method="post">

 <table border="0">

 <thead>

 <tr>

 <td align="center">Upload Your File Here...</td>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td align="left" colspan="2"> <html:errors/> </td>

 </tr>

 <tr>

 <td align="right">File Name: </td>

 <td><html:file property="theFile"/></td>

 </tr>

 <tr>

 <td align="center" colspan="2"><html:submit>Upload File</html:submit></td>

 </tr>

 </tbody>

 </table>

 </html:form>

 <%--

 This example uses JSTL, uncomment the taglib directive above.

 To test, display the page like this: index.jsp?sayHello=true&name=Murphy

 --%>

 <%--

 <c:if test="${param.sayHello}">

 <!-- Let's welcome the user ${param.name} -->

 Hello ${param.name}!

 </c:if>

 --%>

 </body>

</html:html>

Creating Form Bean
The form bean class contains only one property theFile, which is of type org.apache.struts.upload.FormFile. To create a formbean go to your project folder right click and select strutsformbean option.Next, you will find the below figure- fill out all the required filed as shown below.

[image: image27.png]|New Struts ActionForm Bean

Steps

Name and Location

1

2

Chaase Fle Type.
Name and Lacation

Class Name: [strutsUploadrarm

project; [Flelpload

Location;

Package: fommyapp.fieupload

Created File; [nents and settings|Rajkart FieUploadisrelcomimypplfieuploadistrutsUploadForm.java

Superclassi [ra.apache.struts.action.ActionForm ~

Configuration Fie: 1. str.ts-canfig.xm ~

@ The file StrutsUploadForm.java already exists.

<pack ||l i Cancel Help

· To create a property pattern go to your StrutsUploadForm class uncheck the plus sign to navigate thourgh and find property pattern.

· On Property pattern right click and select add(property.Fillout the following information as shown in below figure.

[image: image28.png]= INew Property Pattern

s e

i Forri

Mode: [Read | Write -
I~ Bound

T~ Constrained

optons——————————————
[Generate Field
|7 Generate Return Statement.
[Generate Set Statement

™ (Gererate Broperty Change Support

Cancel Help

Source Code for StrutsUploadForm.java:

	package com.myapp.fileupload;

import javax.servlet.http.HttpServletRequest;

import org.apache.struts.action.ActionErrors;

import org.apache.struts.action.ActionMapping;

import org.apache.struts.action.ActionMessage;

import org.apache.struts.upload.FormFile;

/**

 *

 * @author Raj

 * @version

 */

public class StrutsUploadForm extends org.apache.struts.action.ActionForm {

 /**

 *

 */

 public StrutsUploadForm() {

 super();

 // TODO Auto-generated constructor stub

 }

 public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {

 ActionErrors errors = new ActionErrors();

{ // TODO: add 'error.name.required' key to your resources

 }

 return errors;

 }

 /**

 * Holds value of property theFile.

 */

 private FormFile theFile;

 /**

 * Getter for property theFile.

 * @return Value of property theFile.

 */

 public FormFile getTheFile() {

 return this.theFile;

 }

 /**

 * Setter for property theFile.

 * @param theFile New value of property theFile.

 */

 public void setTheFile(FormFile theFile) {

 this.theFile = theFile;

 }

}

Creating Action Class

The action class simply calls the getTheFile() function on the FormBean object to retrieve the reference of the uploaded file. Then the reference of the FormFile is used to get the uploaded file and its information.

· To create the action class right click on the project and select struts action.Name it as StrutsUploadAction.\

· Give the path as /fileupload. And click next.

· Give the input jsp page as FileUpload.jsp.

· Select the FormBean as StrutsUploadForm.

Source Code of StrutsUploadAction.java

	package com.myapp.fileupload;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.io.InputStream;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.apache.struts.action.Action;

import org.apache.struts.action.ActionForm;

import org.apache.struts.action.ActionMapping;

import org.apache.struts.action.ActionForward;

import org.apache.struts.upload.FormFile;

/**

 *

 * @author RajKart

 * @version

 */

public class StrutsUploadAction extends Action {

 /* forward name="success" path="" */

 private final static String SUCCESS = "success";

 /**

 * This is the action called from the Struts framework.

 * @param mapping The ActionMapping used to select this instance.

 * @param form The optional ActionForm bean for this request.

 * @param request The HTTP Request we are processing.

 * @param response The HTTP Response we are processing.

 * @throws java.lang.Exception

 * @return

 */

 public ActionForward execute(ActionMapping mapping, ActionForm form,

 HttpServletRequest request, HttpServletResponse response)

 throws Exception {

 StrutsUploadForm myForm= (StrutsUploadForm)form;

 FormFile myFile = myForm.getTheFile();

 String contentType = myFile.getContentType();

 String fileName = myFile.getFileName();

 int fileSize = myFile.getFileSize();

 byte[] fileData = myFile.getFileData();

 System.out.println("contentType: " + contentType);

 System.out.println("File Name: " + fileName);

 System.out.println("File Size: " + fileSize);

 return mapping.findForward(SUCCESS);

 }

}

Source code of UploadSuccess.jsp:

	<html>

<head>
<title>Success</title>
</head>

<body>

<p align="center">File Successfully Received</p>

</body>

</html>

Add Forward in struts-config file:

· Right click anywhere in the StrutsUploadAction and select on add forward and enter the fields as shown below.
[image: image29.png]Forward ame: fruccess

Forward To

 Resource il [JUploadSuccess.jsp Browse,

 action Fleupload
I Redrect
Location
© gobal
 acton: [Fieupload =

add Cancel Help

Struts-config File:

	<struts-config>

 <form-beans>

 <form-bean name="StrutsUploadForm" type="com.myapp.fileupload.StrutsUploadForm"/>

 </form-beans>

 <global-exceptions>

 </global-exceptions>

 <global-forwards>

 <forward name="welcome" path="/Welcome.do"/>

 </global-forwards>

 <action-mappings>

 <action input="/FileUpload.jsp" name="StrutsUploadForm" path="/fileupload" scope="request" type="com.myapp.fileupload.StrutsUploadAction">

 <forward name="success" path="/UploadSuccess.jsp"/>

 </action>

 <action path="/Welcome" forward="/welcomeStruts.jsp"/>

 </action-mappings>

 <controller processorClass="org.apache.struts.tiles.TilesRequestProcessor"/>

 <message-resources parameter="com/myapp/fileupload/ApplicationResource"/>

</struts-config>

Finally when you build and run the project you should be able to see the following page to upload the file.

[image: image30.png]Upload JSP Page - Windows Internet Explorer =18l x]

Er—0

