CS 410

 J. Dichter

University of Bridgeport

 Client-Server Caht Program

Interactive Chat Program with Server and Numerous Clients

You are to write a Chat program which allows a person to log onto a chatline. A chatline will be defined as a set of clients logged onto a group chat session. The basic scenario would be for a client to log in with a user name, and be connected to a set of already-logged-in chatters. The chatters would then be alerted that a new chatter is on the system. Each message sent from a chatter would be displayed on the screens of all participants, including the name of the person who sent the message.

Below, a sample of the server and a client is shown. The server is launched, and runs, in this case, on port 2000. The client is started (on an arbitrary machine). When the client types in his desired chat name, and presses Connect, the server and client will appear as shown next.

[image: image1.png]Type Message

=lolx|

View All Chatters

Tryingto Connectto 127.0.01
Connection Established
Server said: Jullus logged in

o

(o] Discornect| _Send

Juzer: utius

Iost 127,004

[Conneet Time: Mon 0ct0 11

Jtatus: connected

K —

[image: image2.png]AWINNT\system32\java.exe
[Server Running on port 2008

CS 410

 J. Dichter

University of Bridgeport

 Client-Server Caht Program

[image: image3.png][chat Client 2000

ChatName

View All Chatters

=lolx|

Connect Disconnect Send

[image: image4.png]AWINNT\system32\java.exe

[Server Running on port 2080
[ADD Julius at FD = Socketladdr=127.8.8.1/127.0.0.1,port=1387, localport=20081

server has 1 connections

[image: image5.png]Type Message

=lolx|

View All Chatters

Tryingto Connectto 127.0.01
Connection Established
Server said: Jullus logged in
Julius said: Helo Everyane!

o

comnect | Disconnect| | [end

Juzer: utius

Iost 127,004

[Conneet Time: Mon 0ct0 11

Jtatus: connected

K —

After a connection, a chatter can send messages, as shown below:

CS 410

 J. Dichter

University of Bridgeport

 Client-Server Caht Program

[image: image6.png]-1ol x|
Type Message View All Chatters

Tryingto Connectto 127.0.01
Connection Established

Server said: Jullus logged in
Julius said: Helo Everyanel fsr s
Server said: Bob logged in

Iost 127,004
[Conneet Time: Mon 0ct0 11

Jtatus: connected

l‘ KT —
comnect | Disconnect| | [end

[image: image7.png]Type Message

=lolx|

View All Chatters

Tryingto Connectto 127.0.01
Cannection Established
Server said: Bob logged in

o

(o] Discornect| _Send

luzer: Bab

Iost 127,004

[Conneet Time: Mon 0ct0 11

Jtatus: connected

K —

[image: image8.png]AWINNT\system32\java.exe

10D Tob a¢ 1D = Socket ladar-127.0.8.1/127.8.0.1,port 1308, Localport-20001
orver has 2 connections

CS 410

 J. Dichter

University of Bridgeport

 Client-Server Chat Program

Your program should allow any number of chatters to log onto the chatline. It should allow the server as well the clients to connect from any machine. The clients must know where the chat server resides. For example, say the server is running on connecticut.bridgeport.edu, the clients can connect to that server by specifying that host as an argument to main() or as a parameter (using –DSERVER=www.bridgeport.edu). The server should keep track of all the open connections to all clients. If a connection is lost – either by disconnection, termination of the client, or a network error – the server should remove that client from the set of connections. A way to deal with this aspect is to us the Vector class, using addElement() and removeElement() for adding and removing connections. An example of the server log is shown for connections logging in and out.

[image: image9.png]AWINNT\system32\java.exe

[Server Running on port 2080 =]
10 Julius ot TD - 'SocketLaddr-127.0.0.1/127.0.0.1,port-1307, localporc-2081
erver has 1 connections

[ServerListener Inconing Message: Julius

server has 1 connections

[ADD Bob at FD = SocketLaddr=127.8.8.1/127.0.0.1, port=1388, localport=20081

[Server has 2 connections
10 Foul”ac FD = Socket[addr-127.0.0.1/127.0.8.1,por6 1313, localpore 20001
orver has 3 connections
10D Wingo ot D = Sockot [addr=127.0.0.1/127.0.0.1, port-1314, localporc-20681
erver has 4 connections

[image: image10.png]=181]
Server has 4 connections

SorverListener Incoming Message: 7.z«DISCONNECTRingo

Entering Process Request: DISCONNECTRingo

Chocking for DISCONNECT: DISCONNECTRingo
disconneced Ringo

Removing connection from Ringo at FD = Socket[addr=s
;localport=-20001

Sorver has 3 connections

ServerListener Incoming Message: x/%%GEIChatters
Entering Process Request: GEIChatters

sending.

sending

sending

Serverlistener Incoming Message: x::xDISCONNECTBob
Entering Process Request: DISCONNECTBob

Chocking For DISCONNECT : DISCONNECTBo)

Removing connection from Bob at FD = Socketladdr=127.0..1/127.0.0.1,port=]
ocalport=20881

Sorver has 2 connections

ServerListener Incoming Message: x/%%GEIChatters

Entering Process Request: GEIChatters

sending.

sending

27.0.0.1/127.6.0.1, port=1314]

08,1}

The client and the server should implement multithreading. The reason the client must be mutithreaded is that the client needs to be able to send a message anytime the Send button is pressed. But the client must also be prepared to receive a message from the server. The latter function necessitates an infinite loop looking for server messages. The server must be multithreaded because it will be in an infinite loop waiting to accept new client

CS 410

 J. Dichter

University of Bridgeport

 Client-Server Chat Program

connections. When a new connection arrives, the server will create a new thread which will listen to an incoming message from a specific client. When the message does arrive, the listener thread should call a method on the main server. This method will iterate through all clients sending a message to each one, removing dead connections in the process. Think about synchronization issues. For example, what happens if two clients send messages at about the same time. Or what happens if a dead connection is being removed as a new connection is being added.

You should also consider what type of messages clients send. For example the initial message is always a connect message. After a connection is made, the clients may issue many send messages. In my program, moving a mouse over the Choice button, causes a client to send a special request to populate the Choice with all active users in the chatline. Last, a client may send an explicit disconnect message. Somehow, the server must be able to differentiate the types of messages and who to respond to. Clearly an update to all active users on one client should not trigger similar messages to all other clients.
You may want to make your design different than mine, perhaps adding menu options, in addition to buttons. Please supply the design using UML along with your final program submission.

