	MultiThreading, Collections, Reflection, Security

	

Part X

Multi Threading

Multi Threading
Thread - It is a flow of control which can be a whole program or a portion of a program. A thread is often called a lightweight process, as a single application program can be distributed across threads such that each one runs concurrently or simultaneously with other threads.

Java allows the programmer to write code for the threads as if they were executing on the processor simultaneously. On a single processor machine, the threads actually run on the processor one at a time, but the programmer can write code which controls how they interact with each other, in terms of scheduling, priority, and communication.

A single application may have multiple threads where, for example, one thread can be downloading a graphic image, another can be keeping track of events, still another can be displaying the image, and a final thread can be sending textual update information to the program user.

Java creates user threads or daemon threads. If an application has only daemon threads running, the application terminates. Otherwise the application terminates when the last user thread finishes.

Threads can be complex to write and debug because they programs that use multithreading are often non-deterministic.

Anatomy of Threads

EZTest

t1

t2

t3
[image: image1.png]| suspendresumetest RRNAIT=TE|

Resume || Suspend

t1 = new EZThread("Red");

t2 = new EZThread("White");

t3 = new EZThread("Blue");

t1.start();

t2.start();

t3.start();

Anatomy of Threads

The Ready Queue is a single priority queue that holds all runnable threads, which are not running on the CPU(s)
There are 10 Queues for all possible Thread priorities MIN_PRIORITY to MAX_PRIORITY

 tail

head

NORM_PRIORITY queue

 tail

head

Anatomy of Threads

 tail

head

priority 10 queue

 tail

head

· Thread States
born - A thread which is created, but has not been sent a message to begin execution

runnable - A thread which has been sent a message to begin execution, but does not yet have control of the processor. It ready to run as soon as the processor can take it.

running - A thread which is currently being executed on the processor

blocked - A thread which is not ready to run at this time due to an I/O request.

suspended - A thread which is not ready to run due to calling the suspend() method

sleeping - A thread which is not ready to run because it has called the sleep() method.

waiting - A thread which is not ready to run because it has called the wait() method.

dead - A thread which has completed its execution, or has been killed by another thread

Threads and the synchronized Keyword

Any object which is a Thread may have zero or more methods which are classified as synchronized.

Synchronized is a way to guarantee mutual exclusion
 Example:

Object Class and Threads

Object Class has 3 Methods used for Multithreading

wait()

notify()

notifyAll()

Any object used as a Thread has a special monitor queue dedicated to it.

In order place a thread into or get a thread out of a monitor queue, the caller must acquire the monitor

A monitor is acquired by entering a synchronized method. When a thread acquires the monitor, it is the monitor's owner. The monitor is released when the synchronized method is exited.

Calling wait()is done to make a thread non-runnable

Causes current thread to wait until either another thread invokes the notify() method or the notifyAll() method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor. otherwise an IllegalMonitorStateException is thrown

Object Class and Threads

Object Class and Threads

Creating Java Threads

One, we define the class which we want to thread as a subclass of the Thread class. For example if the following class is to be a Thread, we can define it as follows:

Two, we define the class similarly, but this time the class is not an extension of Thread. Instead, the class implements the Runnable interface.

Thread Creation Code Examples

Thread Creation Code Examples

Thread Methods
start() - called by the parent thread to place the child thread in the runnable state

setDaemon() - Marks this thread as either a daemon thread or a user thread

currentThread() - returns a reference to the currently executing thread object.

yield() - called to immediately place the running thread into the ready (runnable) queue

interrupt()
- interrupts a blocked thread, such as waiting for I/O, socket connection.

sleep() - called to put the running thread into the sleeping state for a period of time

suspend() - called to put the running thread into a blocked state for an indeterminate amount of time. (deprecated)

resume() - called to place a suspended thread into a runnable state. (deprecated)

stop() - called to kill the thread (deprecated)

wait() - called to place the thread at the end of the waiting queue associated with a particular object.

notify() - called to remove the thread at the front of the waiting queue (associated with a particular object) and put it into the runnable state

notifyAll() - called to place all threads in the waiting queue (associated with a particular object) and put them into the runnable state

isAlive() - called to see whether a thread has completed its run() method

join() - waits at most millis milliseconds for this thread to die. A timeout of 0 means to wait forever. can be called with millis/nanos or no parameter

setPriority() - Changes the priority of this thread.

Thread Interruption

Methods sleep(), join(), wait(), notify, notifyAll() all throw

the InterruptedException. Threads can interrupt other threads and check for interruptions

Thread Exercises

1. Run the BusyBee1 code, BusyBee1Tester (example1)

2. Modify the code so that BusyBee1 makes 15 loops, rather than 10.

3. Run the BusyBee1 code, BusyBee2Tester (example2)

4. Create a new program BusyBeeBothTester so that it creates BusyBee1 and BusyBee2 threads, and starts them both. Check your code against the example2/solution folder if needed.

5. Create a new program BusyBeeBothTester2 so that it creates 2 BusyBee1 and 2 BusyBee2 threads, and starts them all four. Check your code against the example2/solution2 folder if needed.

6. Run the InterruptThread code (example 3)

7. Comment out the line of code

thread.interrupt();

and rerun the code.

This completes the exercises.

Another Simple Thread Example

public class EZTest {

public static void main(String s[]) {

EZThread t1, t2, t3;

t1 = new EZThread("Red");

t2 = new EZThread("White");

t3 = new EZThread("Blue");

t1.start();

t2.start();

t3.start();

while (t1.isAlive() || t2.isAlive() || t3.isAlive()) {

 System.out.println(s[0]);

 try {Thread.sleep(50); }

 catch (InterruptedException e) { } }

System.out.println("\nThat's All, Folks"); } }

public class EZThread extends Thread {

public EZThread (String s) {

super(s); }

public void run() {

for (int i = 0 ; i < 2 ; i++) {

 try { sleep((int) (Math.random() * 200)); }

 catch (InterruptedException e) { }

 System.out.println(getName()); } } }

EZThread Output

Here are a few runs of the EZTest program

Thread Exercises

1. Run the EZTest code, EZTest (example4)

2. Note the different output each time you run the program

3. Modify the sleep time for the EZThread as shown below

4. What do you notice about the output? Do you know why?

5. Now modify the EZTest file by removing the entire while loop. You can do it by commenting out the 4 lines of code.

6. Run EZTest again several times. Do all the EZThread threads complete their runs? ? Why or why not?

7. Make one last change. In the EZTest, make each thread a daemon before starting it.

8. Run EZTest again several times. Do all the EZThread threads complete their runs? Why or why not?

9. Now make only two daemon threads. Do all the EZThread threads complete their runs? Why or why not?

This completes the exercises.

Thread Communication

Threads can communicate using shared memory space. The shared space hold the resource needed by one type, two types, or many types of client threads.

The synchronization and communication is placed in the shared data object whose methods the threads call

Replacing Deprecated Methods

stop() suspend(), resume()

Why are they deprecated? These methods are not thread safe. Usually thread safety issues are due to the risk of deadlock.

Deadlock or Inconsistent State is tied to monitor queue problems. If you do not use wait() or notify() methods, then these methods are safe to use. However it is not recommended because future code modifications might use these methods.

Suspend/Resume

Thread-1 (acquires the monitor)

Thread-1 (holds the monitor)

Thread-1 is suspended (it is holding the monitor)

(Thread-2 can release Thread-1 but it may need to acquire the monitor)

Thread-2 attempts to acquire the monitor (It cannot be acquired)

(Deadlock

Stop

Stopping a thread causes it to unlock all the monitors that it has locked. Objects in an inconsistent state once protected by these monitors, may now be viewed by other objects as being in an inconsistent state.

Thread-1 enters an object, which does not have a necessary resource.

Thread-1 call wait()goes into Monitor Queue

Thread-2 does the same

Thread-3 call stop() on Thread-1

This releases Thread-2 which can view the object without the necessary resource with an assumption of having the resource satisfied

Replacing stop()

Testing The Runner Thread

Replacing suspend() and resume()

Testing The Runner Thread

Testing The Runner Thread

[image: image2.bmp]

Thread Exercises

1. Run the TestRunner code, TestRunner (example5)

2. Modify Runner so that the while loop is controlled by a boolean variable called done. Check your code against the example5/solution folder if needed.

3. Run the SuspendResumeTest code, SuspendResume (example6)

4. Modify so that the console output is clearer as in.

5. Hint: Make the "suspending" and resuming" outputs in the SuspendResume class, and the "quitting" in the SuspendResumeTest class. Check your code against the example6/solution folder if needed.

This completes the exercises.

The Classic Producer-Consumer Problem

The Simple Producer-Consumer Program

Two outputs of the program

Output #1

Output #2__________

Producer produced 1 *

Producer produced 2

Consumer used 2

Producer produced 3

Consumer used 3

Producer produced 4 *

Producer produced 5

Consumer used 5

Producer produced 6

Consumer used 6

Producer produced 7

Consumer used 7

Consumer used 7 +

Producer produced 8

Consumer used 8

Consumer used 8 +

Producer produced 1 *

Producer produced 2

Consumer used 2

Consumer used 2 +

Producer produced 3 *

Producer produced 4

Consumer used 4

Producer produced 5

Consumer used 5

Producer produced 6

Consumer used 6

Producer produced 7

Consumer used 7

Producer produced 8

Consumer used 8

Consumer used 8 +

+
indicates that the consumer read the data value more than once

*
indicates that the consumer never read the value at all

Fixing the Consumer Producer Problem

Good News:

We only have to modify the SharedData Class. The Consumer, Producer and Test classes are not the problem

Bad News:

The simple solution will likely not work

Thread Exercises

1. Run the Consumer/Producer code, ProdConsTest (version1)

2. Modify SharedData so the getSharedData() and setSharedData() methods are synchronized

3. Test your solution by running the program several times. Did this fix the unused and overused problem? Can you explain it?

This completes the exercises.

Fixing the Consumer Producer Problem

The problem was not fixed because it was not die to non-mutual exclusion to the SharedData object

Each thread had exclusive access due to the fact that each method was a single instruction. If the SharedData has a very large array of values, then we would potentially have a mutual exclusion problem as well as an inconsistent state data problem.

Above we would have potential problems with get and set Methods. Why?

Fixing the Consumer Producer Problem

We need to view the shared data as a resource. The Consumer must be sure it is there to proceed. The Producer must be sure it is not there to proceed. We use a binary semaphore in the solution.

Each type of thread must not complete its call if the resource is not present.

Producer: Resource is the memory location from a read value

Consumer: Resource is an unread value

Thread Exercises

1. Run the Consumer/Producer code several times, ProdConsTest (version2)

2. Did this fix the unused and overused problem?

3. Let's modify the program as follows. We will have 2 Consumers and one Producer. To make things add up, the Consumer will not be modified. But the Producer will produce twice as many values. Use the Thread getName()method so that we can track which Consumer is consuming a particular value. Modify the Consumer and Producer constructors to take a second parameter a String for the name of the Thread. In each class, make the first call to super(name), calling the String constructor to the Thread superclass. In this way, getName() will return your chosen name, rather than a JVM number. Check your code against the producerConsumer/version 2Consumers 1Producer folder if needed.

4. Run this several times to see if the program runs as expected. Does it?

5. Now run 2 Producers (16 products each) and 4 Consumers (8 products each). Still work?

6. One more change, give the Producer two more int constructor parameters, from to. Have the Producer produce values from from to to. Hint: Use these values as the range for the for loop. Check your code against the producerConsumer/version 4Consumers 2Producers folder if needed.

This completes the exercises.

A Scaleable Buffered Consumer Producer Problem

We use two binary semaphores in the solution.

Producer: Resource is any free/read memory location

Consumer: Resource is any unread value

Thread Exercises

1. Run the Consumer/Producer code several times, ProdConsTest (versionBuffered)

2. Let's modify the program as follows. We will have 100 Consumers and 100 Producers. The buffer is 500, and each Producer and each Consumer will produce or consume 8 items. You will need to use arrays of 100 elements of Producer and Consumer.

3. Run this several times to see if the program runs as expected?

4. Do you feel that the speed if fast for 200 threads?

5. One more change, make the SharedData BUF size just 2, instead of 500. Also, add 4000 to the sleep time for the Producers. Compare the time it now takes to perform the same task. Check your code against the producerConsumer/badsolution folder if needed.

6. Do you think that it was the longer sleep time, or the decreased buffer size that slowed the performance? Why?

This completes the exercises.

Thread Exercises

1. Examine the code in the SummerThreadTest program, SummerThreadTest. There are four lines, which are marked with TODO comments. Fill in the missing code to run the program.
2. Let's modify the program as follows. Add a time couter before the threads are started and after they are joined Use the following code

long timeStart = java.util.Calendar.getInstance().getTimeInMillis();

Then print out the number of milliseconds it took to run the program

3. Your output should look similar to the following. Check your code against the threadSummer/solution folder if needed.

This completes the exercises.

Part XI

Collections

Java Arrays

Arrays are almost a class, but not quite.

Arrays as Objects

Arrays are passed by Reference

Arrays have a public data member, length
Array names are references to the Array content

Arrays not quite as Objects

Arrays have no constructors

Arrays have no methods

Creating an array

One way:
int myArray[];

myArray = new int [25];

Another way:

int myArray[] = new int[25];

Initializing Arrays

Primitive Array:
int someArray [] = { 11, 35, 67, 12, 34, 11, 1, 8, -4, 3 };

Object Array:
Point [] points = {new Point(2,3), new Point(3,4),

new Point(12,8),new Point(2,33)};

Higher Dimensioned Arrays

One Way:

int x[][];

char ch [][][];

Alternative Way:

int [][] x;

char [][][] ch;

Defining Multidimensional Arrays

char [][][] ch;

ch = new char[3][4][2];

double [][] X = {{3,5,7}, {4,6,8}, {3,1,1}};

int [][] Y = {{2,4,6,8,10}, {3,4,1}, {4,0}};

Y[0].length (5

Y[1].length (3

Y[2].length (2

short [][] S;

S = new short[5][];

S[0] = new short[3];
// allocates 2nd dimension

S[1] = new short[2];

S[2] = new short[4];

3-D Array Example

X[0][0][0] = 1

X[0][0][1] = 2

X[0][0][2] = 3

X[0][0][3] = 4

X[0][0][4] = 5

X[0][1][0] = 2

X[0][1][1] = 4

X[0][1][2] = 6

X[0][1][3] = 8

X[0][1][4] = 10

X[0][2][0] = 3

X[0][2][1] = 6

X[0][2][2] = 9

X[0][2][3] = 12

X[0][2][4] = 15

X[1][0][0] = 2

X[1][0][1] = 4

X[1][0][2] = 6

X[1][0][3] = 8

X[1][0][4] = 10

X[1][1][0] = 4

X[1][1][1] = 8

X[1][1][2] = 12

X[1][1][3] = 16

X[1][1][4] = 20

X[1][2][0] = 6

X[1][2][1] = 12

X[1][2][2] = 18

X[1][2][3] = 24

X[1][2][4] = 30

Collections Exercises

1. Run the code in the example1 folder, ThreeDArray.
2. Modify the program as follows. Change the dimensions of the array

X = new int [20][30][8];

Then rerun the program.

3. Replace line 7

X = new int [2][3][5];

with

X = new int [2][3][];

X[0][0] = new int [2];

X[0][1] = new int [3];

X[0][2] = new int [5];

X[1][0] = new int [1];

X[1][1] = new int [4];

X[1][2] = new int [3];

and rerun the program.

4. Did the ragged array get processed as you expected? Check your code against the example1/solution folder if needed.

This completes the exercises.

Arrays and Objects
When we create an array of objects, we need to do two things

1. Define the array references

2. Define the object elements

Example:

Integer X[];

X = new Integer[4];

Integer val1 = new Integer(4);

Integer val2 = new Integer(-1);

Integer val3 = new Integer(5);

Integer val4 = new Integer(23);

X[0] = val1; X[1] = val2; X[2] = val3; X[3] = val4;

alternatively, we can write

X[0] = new Integer(4);

X[1] = new Integer(-1);

X[2] = new Integer(5);

X[3] = new Integer(23);
Vector Class

Some Vector Methods

addElement (Object)
adds an element to the Vector, adds size if necessary

removeElement (Object)
removes the element from the Vector, moves all elements past the removed elements down one location

firstElement ()
return the reference to the frst Vector element, or throws NoSuchElementException

lastElement ()
return the reference to the last Vector element, or throws NoSuchElementException

isEmpty (Object)
returns true if Vector has no elements

contains (Object)
returns true if the Vector contains the Object parameter. The method uses the equals () method for comparison

indexOf (Object)
returns the index of the Object, if it is stored in the Vector, otherwise it returns -1

trimToSize ()
resizes the capacity of the Vector to its number of elements

elements ()
returns a reference to an Enumeration object. This is used to iterate through the Vector elements

add (index, Object)
add Object at specific index

add(Object)
add Object to end

addAll(Collection)
add contents of the Collection

addAll(index, Collection)
add contents of Collection to specific index

size ()
number of elements in the Vector

Vector Program

Collections Exercises

1. Run the code in the example2 folder, VectorTest.
2. Modify the program as follows. Create a new class called Employee, having a two properties, last and first of type String. Create a simple constructor with 2 String parameters and override the toString() method so that it returns the Employee's name. Add the following lines in the appropriate location in the VectorTest source code.
v.addElement(new Employee("Jones","Bill"));

if (v.contains(new Employee("Jones","Bill"))) {

 int i = v.indexOf(new Employee("Jones","Bill"));

 System.out.println(new Employee("Jones","Bill") + " at index " + i); }

Then rerun the program. Did you find the Employee object in the

Vector? Do you know why?

3. You will need to override the equals method in the Employee class to confidently find an Employee object in the Vector. Recall our discussion of the equals method, and add this to the Employee class. [Recall that the contains method uses the equals method to compare to the Vector elements. Unless you did an override, it will use the Object class equals method which uses simple == logic] Rerun the program. Was the Employee object found this time? Check your code against the example2/solution folder if needed.

This completes the exercises.

Enumeration

A Vector and many collections objects return an Enumeration to the collection of elements.

An Enumeration is an interface, which implements two methods

hasMoreElements()

nextElement()

Collections Exercises

1. Run the code in the example3 folder, VectorTest.
2. Modify the program as follows. Add the following Enumeration processing code:
Enumeration enumer = v.elements();

StringBuffer sb = new StringBuffer();

while (enumer.hasMoreElements())

 sb.append(enumer.nextElement() + "\n");

System.out.println("Contents of Vector:\n\n" + sb + "end of data.");

Also add two more Employee objects into the Vector. Rerun the

program. You should see the listing of all Vector objects and the end

4. of the output. Check your code against the example3/solution folder if needed.

This completes the exercises.

Creating New Collections

In this example we create an Enumeration Factory for Arrays. The method makeEnumeration() returns an object of an anonymous class which implements the Enumeration interface

Enumeration Factory Tester

This code is located in the example4 folder

Hashtable Class
A Hashtable uses the mapping scheme to plave the object (by a hashing function of the key) into a Hashtable slot. A Hashtable always should have more slots than data elements it needs to store.

The packing ratio is the proportion of empty slots to total slots in a Hashtable.

Hashtable Constructors:

Hashtable ()

creates an empty Hashtable with 101 slots (a default amount)

Hashtable (int)
creates an empty Hashtable with the specified number of slots

Hashtable (int, float)
creates an empty Hashtable with the int specified number of slots and a packing density of the float parameter

Some Hashtable Methods:

Object put (Object , Object)
places a the 2nd parameter object into the Hashtable by hasing on the key (first parameter). Returns null if nothing else has been stored under this key value

Object get (Object)
returns a reference to the sored object by finding it through hashing on the parameter

boolean containsKey(Object)
returns true if the object parameter is a key to a stored element in the Hashtable

boolean contains(Object)
returns true if the Object is stored in the Hashtable
void remove(Object)
removes the object whose key we pass into the method

boolean isEmpty()

return true if the Hashtable has no elements

void clear()

clears out the Hashtable

Hashtable Class Example

This code is located in the example5 folder

The Properties Class
The Properties class, is an extension of HashTable. Very useful when all key/value pairs are of type String.

The following three additional methods make it unnecessary to cast the key or value on input or output.

public String getProperty(String key)

public String getProperty(String key, String defaultValue)

public Object setProperty(String key, String value)

In addition, Properties allows reading and writing the key/value pairs to and from streams.

public void load(InputStream in)

public void store(OutputStream out, String header)

public void list (PrintStream stream)

Common Usage in UserName/Password applications

Properties credentials = new Properties();

credentials.setProperty("USER","John");

credentials.setProperty("PASS","secret");

db.login(credentials)

Properties Class and File I/O

Properties Files can easily be read and written to a file with a single method call.

This code is located in the example6 folder

Java Collections Interface and Related Classes
Collection
Any group of objects

List
An extension of a Collection, which keeps a sequence of ordering

Set
An extension of a Collection, which behaves like a mathematical set without duplicates

Map
A bunch of Hashtable/Properties type elements with key/value pairs

The Collection interface
boolean
add(Object o)

boolean
addAll(Collection c)

void
clear()

boolean
contains(Object o)

boolean
containsAll(Collection c)

boolean
equals(Object o)

int
hashCode()

boolean
isEmpty()

Iterator
iterator()

boolean
remove(Object o)

boolean
removeAll(Collection c)

boolean
retainAll(Collection c)

int
size()

Object[]
toArray()

Object[]
toArray(Object[] a)

The Iterator interface
boolean
hasNext()

Object
next()

void

remove()

ArrayList Instance Example

This code is located in the example7 folder

A Set is a Collection Without Duplicates

A set has the same interface as a Collection, but in addition it maintains a no-duplicates policy.

A HashSet has a set discipline with a Hashtable in the back end. All elements in the HashSet are required to implement the hashCode() method.

A TreeSet is a way to maintain an ordered set. The back end is implemented by a balanced tree data structure. The TreeSet implements the SortedSet interface, shown below.

The SortedSet interface
Comparator
comparator()

Object

first()

SortedSet*
headSet(Object toElement)

Object
last()

SortedSet* subSet(Object fromElement, Object toElement)

SortedSet* tailSet(Object fromElement)

* returns a view into the Set, not a new Set object

Set and SortedSet Example

Collections Exercises

1. Run the code in the example8 folder, MoonSet.
2. Modify the program as follows. Use the Collection interface to remove all the moons in the which start with letters D - P. Then check your work, by iterating over the moons Set to be sure it no longer contains the removed subset.
3. Remember that you need to create a subset instance, not just a view into the moons Set.

4. Check your code against the example8/solution folder if needed.

5. Use the Collections interface to create an Object array of the Set elements. Then reuse our own ArrayToEnumeration class from example 4 to create an Enumeration from this Object array, and display the Enumeration to show all the moons.

6. Check your code against the example8/solution2 folder if needed.

This completes the exercises.

A List is a Collection With Positional Placement

A List allows element manipulation at a specific index as well as at the end.

An ArrayList is similar to a Vector. Both Collections maintain elements in an automatically resizable array.

A LinkedList offers the same utility as an ArrayList, but insertions and removals from the middle of the list are efficiently implemented internally as a doubly-linked list.

The List interface
void

add(int index, Object element) ;

boolean
add(Object o) ;

boolean
addAll(Collection c) ;

boolean
addAll(int index, Collection c) ;

void clear() ;

boolean
contains(Object o) ;

boolean
containsAll(Collection c) ;

boolean
equals(Object o) ;

Object
get(int index) ;

int hashCode() ;

int indexOf(Object o) ;

boolean
isEmpty() ;

Iterator iterator() ;

int lastIndexOf(Object o) ;

ListIterator
listIterator() ;

ListIterator
listIterator(int index) ;

Object remove(int index) ;

boolean remove(Object o) ;

boolean removeAll(Collection c);

boolean retainAll(Collection c) ;

Object set(int index, Object element) ;

int size() ;

List subList(int fromIndex, int toIndex) ;

Object[] toArray() ;

Object[] toArray(Object[] a) ;

Iterator and ListIterator interfaces
The main difference between Iterator and ListIterator is that latter takes advantage of the List feature of double linking while the former is useable for all Collections.

The ListIterator interface
void add(Object o)

boolean
hasNext()

boolean
hasPrevious()

Object
next()

int nextIndex()

Object
previous()

int previousIndex()

void remove()
//
removes element returned by last next or previous

void set(Object o) //
replaces last element returned by next or previous

The Map Interface

The Map interface is similar to a HashTable because it stores key/value pairs.

The Map interface
void
clear()

boolean

containsKey(Object key)

boolean

containsValue(Object value)

Set*
entrySet()

boolean
equals(Object o)

Object
get(Object key)

int hashCode()

boolean
isEmpty()

Set
keySet()

Object
put(Object key, Object value)

void
putAll(Map t)

Object
remove(Object key)

int size()

Collection
values()

* entrySet returns a Set of Map.Entry objects valid during an iteration though

Map.Entry interface
Object

getKey()

Object

getValue()

Object

setValue(Object)

Map Example

Collections Exercises

1. Run the code in the example9 folder, DiameterMap.
2. Modify the example so that you change the diameters in the Map to twice the original. Follow the detailed TODO comments included in the code in the example9 folder. Use the notes for the Map and Map.Entry interfaces to help you complete the changes.
3. If you were successful, the last output line should read

Venus: 24207.2

4. Check your code against the example9/solution folder if needed.

This completes the exercises.

Comparing Array Elements and Array Algorithms

Two important interfaces are Comparable and Comparator

Used for classes which have a natural ordering

Lists and Arays of objects that implement this interface can be sorted automatically by Arrays.sort. Objects that implement this interface can be used as keys in a SortedMap or elements in a sSortedSet, without the need to specify a comparator.

public interface Comparable {

public abstract int compareTo(Object o); }

Comparing Array Elements and Array Algorithms

Used for classes which have an ordering imposed by the programmer

public interface Comparator {

public abstract int compare(Object o1, Object o2);

public Boolean equals(Object o); }

Collections Exercises

1. Run the code in the example10 folder, EmployeeSort.
2. You will get a compile error regarding a lack of implementation of the Comparable interface in the Employee class. Implement the interface as suggested in the TODO comment. Compile the Employee class only. Did it work?
3. Now make the call to the Arrays.sort() method, and redisplay the array in sorted order as instructed in the TODO comments in the EmployeeSort file. You should be able to see the sorted array now. Check your code against the example10/solution folder if needed.

4. Now run the code in the example11 folder, EmployeeSort
5. It will print the array employees in the original sequence only. You will make modifications in the EmployeeSort file only. First make a non-public class EmpSort which implements the Comparator interface. This class follows immediately after the close bracket of the EmployeeSort public class. Then code its compare method. Follow the detailed TODO comments. Then make two more simple additions. Call the Arrays.sort with an instance of the EmpComp, then redisplay the employees in the new descending sequence. Again, follow the detailed TODO comments in the file. Check your code against the example11/solution folder if needed.

This completes the exercises.

The Arrays Class

The class Arrays includes algorithms such as

binarySearch()

equals()

fill()

sort()
The following is a partial listing:

static List
asList(Object[] a)

static int
binarySearch(char[] a, char key)

static int
binarySearch(double[] a, double key)

static int
binarySearch(float[] a, float key)

static boolean
equals(double[] a, double[] a2)

static boolean
equals(float[] a, float[] a2)

static boolean
equals(int[] a, int[] a2)

static void

fill(long[] a, long val)

static void

fill(Object[] a, int from, int to, Object val)

static void

fill(Object[] a, Object val)

static void

sort(int[] a)

static void

sort(int[] a, int from, int to)

static void

sort(long[] a)

static void

sort(long[] a, int from, int to)

static void

sort(Object[] a)

static void

sort(Object[] a, Comparator c)

static void

sort(Object[] a, int from, int to)

Part XII

Reflection

Reflection

Reflection is the ability to access metadata about a class, to interrogate that metadata

Reflection allows loading, creating, calling methods, accessing modifiers and properties from classes that currently may be unknown the JVM.

The Reflection API consists of two parts

1. The Class class

2. The java.lang.reflect package

The Object Class

Object clone()
Performs a shallow copy if the object implements the Cloneable interface, otherwise throws an exception. Note Object does not implement the Cloneable interface

void finalize()
It is a destructor in Java, called automatically by Garbage Collector before recycling memory

Class getClass()
Returns the Class object for the caller

int hashCode()

void notify()

void notifyAll()

String toString()

void wait()

The Class Class

Instances of the class Class represent classes and interfaces in a running Java application. Every array also belongs to a class that is reflected as a Class object that is shared by all arrays with the same element type and number of dimensions.

Class has no public constructor. Instead Class objects are constructed automatically by the Java Virtual Machine as classes are loaded and by calls to the defineClass method in the class loader and calls to Class.forClass method.

The following example uses a Class object to print the class name of an object:

Partial Listing of the Class class

static Class
forName(String className)

Class[]

getClasses()

ClassLoader
getClassLoader()

Class

getComponentType()

Constructor
getConstructor(Class[] paramTypes)

Constructor[]
getConstructors()

Class[]
getDeclaredClasses()

Constructor
getDeclaredConstructor(Class[] paramTypes)

Constructor[]
getDeclaredConstructors()

Field

getDeclaredField(String name)

Field[]
getDeclaredFields()

Method

getDeclaredMethod(String name, Class[] paramTypes)

Method[]
getDeclaredMethods()

Field

getField(String name)

Field[]

getFields()

Class[]

getInterfaces()

Method

getMethod(String name, Class[] paramTypes)

Method[]

getMethods()

int

getModifiers()

String

getName()

Package

getPackage()

URL

getResource(String name)

InputStream
getResourceAsStream(String name)

Class

getSuperclass()

Boolean

isArray()

Boolean

isAssignableFrom(Class cls)

Boolean

isInstance(Object obj)

Boolean

isInterface()

Boolean

isPrimitive()

Object

newInstance()

String

toString()

Reflection Classes and Interfaces

Reflection Classes
Constructor

A class constructor

Field

A field of a class

Method

A method in the class

Modifier

reveals member access modifiers

Array

Allows dynamically create and access arrays

AccessibleObject

Base class for Field, Method and Constructor objects

ReflectPermission

allows extra security on what can and cannot be reflected

Reflection interface
Member

reflects identifying information about a single member - a field, method, or constructor

Reflection Exception

InvocationTargetException
InvocationTargetException is a checked exception that wraps an exception thrown by an invoked method or constructor

The Reflection Package: Member Interface

Class getDeclaringClass()

int getModifiers()

String getName()

The Reflection Package: The Method class

boolean
equals(Object obj)

Class getDeclaringClass()

Class[] getExceptionTypes()

int getModifiers()

String getName()

Class[] getParameterTypes()

Class getReturnType()

int hashCode()

Object invoke(Object obj, Object[] args)

String toString()

Example of Reflection

Reflection Exercises

1. Run the code in the example1 folder, ClassLister. Add a parameter to you run configuration, ClassLister.
2. You will get a listing of the ClassLister class itself. Now rerun the program, but as parameters use the following, SharedData, Producer, Consumer (they are already in the folder). Did it work?

3. If it did not work, you need to compile the 3 classes named in step 2. That is because reflection uses the compiled class file, not the source! Run the program.after you have compiled the classes.

This completes the exercises.

The Modifier Class

The Modifier class is a utility containing static methods to deal with the single long value which is returned by the getModifiers method.

static boolean isAbstract(int mod)

static boolean isFinal(int mod)

static boolean isInterface(int mod)

static boolean isNative(int mod)

static boolean isPrivate(int mod)

static boolean isProtected(int mod)

static boolean isPublic(int mod)

static boolean isStatic(int mod)

static boolean isStrict(int mod)

static boolean isSynchronized(int mod)

static boolean isTransient(int mod)

static boolean isVolatile(int mod)

static String
toString(int mod)

Example

Reflection Exercises

1. In example2 folder, create a Reflection program called ListerThreadClasses, which is a variation of the ClassLister, so that it will print the names of any classes which either implement the Runnable interface or extend the Thread class.

2. Check your code against the example2/solution folder if needed.

3. Add another feature to the ListerThreadClasses program. List any classes that have any synchronized methods.

4. Check your code against the example2/solution2 folder if needed.

This completes the exercises.

Running Reflection And Extracting a Field Value

Running Reflection With An Unknown Method

Reflection Exercises

1. Run the PrintPi program in folder example3. There is also a static constant E of type double. Modify your program to also print E.

2. Check your code against the example3/solution folder if needed.

3. Run the SinPi program in folder example4

4. Make a change so that you compute the cosine function (cos), instead of sine (sin). Check your code against the example4/solution2 folder if needed.

This completes the exercises.

Reflection Exercises

1. Complete the TODO sections of the RunUnknownClass program in folder example5 to allow you to call any call with a default constructor at runtime.

2. Run the program with WordDrag as a parameter to main. If there is an exception, you may need to compile WordDrag.java. Then try again.

3. Try to run any other class with a default constructor, by simply modifying the parameter name to main.

4. Check your code against the example5/solution folder if needed.

5. Comment out your entire program and add a single line

Class.forName(args[0]).newInstance();

Does the WordDrag application still launch? Do you know why it was

important to do it the long way?

This completes the exercises.

Part XIII

Security

Java Security Model

Java programs can be made to follow a security policy. Browsers automatically create a SecurityManger object to check permissions for Applet actions.

Java Applications do not follow a security automatically, but a SecurityManager can be installed.

The default security policy file is located in

%JAVA_HOME%\jre\lib\security

The file is called java.policy

Another security file can be specified for any Java Application

Java Applets run in the "sandbox" meaning that strict security is observed for them. They cannot read/write the local file system. open sockets, start servers, etc …

Applet security exceptions can be made to allow special permissions for particular Applets from particular sites

Java Security Model

Java allows a SecurityManager object to be installed to check the current security policy file for granted actions.

Actions not granted are considered forbidden
Example policy file

 mySecurity.policy
This policy allows the running application from the Julius/apps folder to delete files in the directory C:\Julius\apps\ ending with the ".txt" extension

Installing a Security Manager

The security manager and policy file can be installed as a VM argument

c:>java -Djava.security.manager

-Djava.security.policy=myRules.policy MyJavaApplication

Alternatively the security policy can be overridden with

c:>java -Djava.security.manager

-Djava.security.policy==myRules.policy MyJavaApplication

Also the SecurityManager can be installed from the program itself

Security Exercises

1. Compile and run the familiar program, CreateFile, located in the example1 folder. You should notice a data.in file being generated from the run.

2. Run the program again, but this time as follows: Create a file called java.policy1, save it in the same folder. The file should be empty. Add the following VM arguments

-Djava.security.manager

-Djava.security.policy=java.policy1

3. Did you get a SecurityException thrown? You should have. This is the security manager, not seeing any permission for the java.io.FilePermission class specified.

4. Create a second file, named java.policy2 with the following content

grant {

permission java.security.AllPermission;

};

5. Rerun the program. Did it succeed? It should have.

6. Create a policy file, java.policy3 with the code

grant codeBase "file:C:/…./code/Part XIII/example1/"

{

permission java.io.FilePermission "*", "read";

};

Security Exercises

7. Run the program. It should still throw the SecurityException, modify java.policy3 as follows

grant codeBase "file:C:/…./code/Part XIII/example1/"

{

permission java.io.FilePermission "*", "write";

};

8. Run the program. It should be OK now. Now run the 2nd program, FileIO with the following VM arguments

-Djava.security.manager

-Djava.security.policy=java.policy3

9. You may have a problem reading the file. Modify java.policy3 to add the read permission as well

grant codeBase "file:C:/…./code/Part XIII/example1/"

{

permission java.io.FilePermission "*", "read,write";

};

10. Check your code against the example1/solution folder if needed.

This completes the exercises.

Security Exercises

1. Compile and run the familiar program, CreateFile, located in the example2 folder. As before, you should notice a data.in file being generated from the run.

2. Run the program again, but this time as follows: Create a file called java.policy, save it in the same folder. The file should be empty. Add the following VM arguments

-Djava.security.manager

-Djava.security.policy=java.policy

3. Your program fails to run, and throws the SecurityException. This time, let's handle the exception. After trying to open the file for write place an additional catch block following the

catch (IOException ioe)

block. Follow the TODO comments in the CreateFile so that your program exits, and prints an appropriate message on exit.

4. Check your code against the example2/solution folder if needed.

This completes the exercises.

Java Security

Applets by default have severe restrictions on what they can do on a client machine. This is in general a good idea. However, suppose you have an Applet you are using as part of your company web application. You can specify to the JVM, typically the JRE Java plug-in the security addition of

Allow all access from trusted site

grant codebase "http://www.mmm.com:90/mywebapp" {

permission java.security.AllPermission;

};

Alternatively we may be more restrictive

grant codebase "http://www.mmm.com:90/mywebapp" {

permission java.net.SocketPermission "localhost:1024-", "accept,connect,listen";

permission java.io.FilePermission "/-", "read";

permission java.net.SocketPermission "*:1024-65535",

 "connect,accept";

permission java.net.SocketPermission "*:80", "connect";

};

Security Policy in Apache Tomcat

Default tomcat.policy file

// javac needs this

grant codeBase "file:${java.home}/lib/-" {

 permission java.security.AllPermission;

};

// Tomcat gets all permissions

grant codeBase "file:${tomcat.home}/lib/-" {

 permission java.security.AllPermission;

};

grant codeBase "file:${tomcat.home}/classes/-" {

 permission java.security.AllPermission;

};

// Example webapp policy

// By default we grant read access on webapp dir

// and read of the line.separator PropertyPermission

grant codeBase "file:${tomcat.home}/webapps/examples" {

 permission java.net.SocketPermission "localhost:1024-","listen";

 permission java.util.PropertyPermission "*","read";

};

Threads are born

Threads are runnable

The parent thread creates and starts the three child threads. Once the children are runnable, the parent thread competes for processor time. It goes through the states of runnable and running. The parent completes when the last child thread completes its work.

Threads t1, t2, t3 compete with each other and their parent thread for processor time. They go through the states of runnable, running, and sleeping. They will complete their work (die) in a staggered fashion

CPU

thread_curr

t3 | t2 | t1

<<empty queue >>

CPU

thread_curr

(priority 10)

thread_x | thread_y | thread_z

thread_p | thread_q

<<empty queue >>

tail

head

head

tail

<<empty queue >>

head

tail

<<empty queue >>

priority 9 queue

priority 8 queue

priority 1 queue

public class SharedData {

private int value;

public void setSharedData(int n) {

. . .

. . .

. . .

value = n; }

public int getSharedData() {

. . .

. . .

. . .

return value; }

}

Thread 1

Thread 2

Thread 3

2

1

Monitor Queue

Synchronized Object

3

4

5

CPU

 Thread 2

Ready Queue at Step 4

Thread 3

CPU

 Thread 2

Ready Queue at Step 5

Thread 1 | Thread 3

CPU

 Thread 1

Ready Queue at Step 2

Thread 3 | Thread 2

CPU

 Thread 2

Ready Queue at Step 3

Thread 3

(Thread 1 in Monitor Queue)

wait()

notify()

acquire

acquire

6

(Thread 1 in Monitor Queue)

public class BusyBee1 extends Thread {

public BusyBee1 () { }

public void run() {

int i = 0;

while (i++ < 10) {

 System.out.println("I am a Busy Bee 1");

 try { sleep(1000); }

 catch (InterruptedException e) { }

 System.out.println("Bzzzzzzzzzzzzzz"); } } }

public class BusyBee2 implements Runnable {

public BusyBee2 () { }

public void run() {

int i = 0;

while (i < 10) {

 System.out.println("I am a Busy Bee 2");

 try { Thread.sleep(1000); }

 catch (InterruptedException e) { }

 System.out.println("Bzzzzzzzzzzzzzz"); } } }

public class BusyBee1Tester {

private static BusyBee1 beeThread;

	

public static void main (String [] s) {

beeThread = new BusyBee1();

beeThread.start();

}

} // BusyBee1Tester

I am a Busy Bee 1

Bzzzzzzzzzzzzzz

I am a Busy Bee 1

Bzzzzzzzzzzzzzz

. . .

I am a Busy Bee 1

Bzzzzzzzzzzzzzz

I am a Busy Bee 1

Bzzzzzzzzzzzzzz

I am a Busy Bee 1

Bzzzzzzzzzzzzzz

I am a Busy Bee 1

Bzzzzzzzzzzzzzz

I am a Busy Bee 1

Bzzzzzzzzzzzzzz

I am a Busy Bee 1

Bzzzzzzzzzzzzzz

I am a Busy Bee 1

Bzzzzzzzzzzzzzz

Output completed (10 sec consumed) - Normal Termination

Output

public class BusyBee2Tester {

	

public static void main(String[] s) {

BusyBee2 beeObject;

Thread thread;

beeObject = new BusyBee2();

thread = new Thread (beeObject);

thread.start();

}

} // BusyBee2Tester

Output

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

. . .

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2

Bzzzzzzzzzzzzzz

I am a Busy Bee 2I am a Busy Bee 1

Bzzzzzzzzzzzzzz

I am a Busy Bee 1

Bzzzzzzzzzzzzzz

Output completed (10 sec consumed) - Normal Termination

public class InterruptThread extends Thread {

public InterruptThread () { }

public void run() {

int i = 0;

System.out.println("Starting Interrupted");

 try { sleep(10000); }

 catch (InterruptedException e) { }

 System.out.println("Testing Interrupted"); }

 public static void main(String[] d) {

 InterruptThread thread = new InterruptThread();

 thread.start();

 while (thread.isAlive()) {

	thread.interrupt();

	try { sleep(100); }

	catch (InterruptedException e) { }

 } } // run

 } // InterruptThread

GREEN

GREEN

GREEN

Red

GREEN

Blue

Red

White

GREEN

GREEN

White

Blue

That's All, Folks

GREEN

GREEN

White

GREEN

Red

GREEN

Blue

Red

GREEN

White

GREEN

GREEN

Blue

That's All, Folks

GREEN

GREEN

Red

Blue

GREEN

GREEN

White

GREEN

Red

White

GREEN

Blue

That's All, Folks

GREEN

Red

GREEN

Red

GREEN

GREEN

White

Blue

GREEN

White

GREEN

GREEN

Blue

That's All, Folks

 try { sleep((int) (Math.random() * 200) +1000); }

Shared Object

setData

getData()

obj1

obj2

obj3

Read/Write Access

Read/Write Access

Read/Write Access

public class Runner extends Thread {

private int interval = 1000;

private volatile Thread runner= this;

public void kill() {

 runner = null; }

public void run() {

 System.err.println("in run()");

 Thread thisThread = Thread.currentThread();

 while (runner == thisThread) {

 try {

 thisThread.sleep(interval);

 } catch (InterruptedException e){

 }

 System.err.println("running..."); }}

}

public class TestRunner

{

public static void main(String[] args) {

Runner runner = new Runner();

runner.start();

System.err.println("runner is " + (runner.isAlive()? "True" : "False"));

System.err.println("TestRunner running");

try {

	Thread.sleep(6000); }

	catch (InterruptedException e){ }

System.err.println("TestRunner woke up");

runner.kill();

try {

	runner.join(); }

	catch (InterruptedException e){ }

System.err.println("TestRunner terminating");

System.err.println("runner is " + (runner.isAlive()? "True" : "False")); }}

runner is True

TestRunner running

in run()

running...

. . .

running...

running...

TestRunner woke up

running...

TestRunner terminating

runner is False

Output

public class SuspendResume extends Thread {

private int interval = 1000;

private boolean held; // initializes to false

public synchronized void myResume() {

	held = false;

	notify(); }

public void mySuspend() {

	held = true; }

public void toggle() {

 held = ! held;

 }

public void run() {

System.err.println("in run()");

Thread thisThread = Thread.currentThread();

while (true) {

try {

 thisThread.sleep(interval);

	synchronized(this) {

		while (held)

			wait(); } // sync

	} // try

catch (InterruptedException e) { }

System.err.println("running...");

} }	

} // SuspendResume

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class SuspendResumeTest implements ActionListener {

private JFrame frame;

private JButton resume;

private JButton suspend;

private SuspendResume srThread;

public SuspendResumeTest() {

frame = new JFrame("SuspendResumeTest");

frame.setBounds(200,200,300,80);

frame.getContentPane().setLayout(new FlowLayout());

resume = new JButton("Resume");

suspend = new JButton("Suspend");

resume.addActionListener(this);

suspend.addActionListener(this);

frame.getContentPane().add(resume);

frame.getContentPane().add(suspend);

frame.addWindowListener(new WindowAdapter() {

	public void windowClosing(WindowEvent e) {

		System.exit(0); }});

srThread = new SuspendResume();

srThread.start();

frame.setVisible(true); } // SuspendResume Constructor

public static void main(String[] args) {

	new SuspendResumeTest(); }

public void actionPerformed(ActionEvent e) {

if (e.getSource() == suspend) {

	srThread.mySuspend();

	return; }

if (e.getSource() == resume) {

	srThread.myResume();

	return; }}}

in run()

running...

running...

running...

running...

running...

running...

running...

in run()

running...

running...

running...

suspending...

resuming...

running...

running...

running...

running...

running...

suspending...

resuming...

running...

running...

suspending...

quitting...

public class SharedData {

private int value;

public void setSharedData(int n) {

value = n; }

public int getSharedData() {

return value; } }

public class ProdConsTest {

public static void main(String s[]) {

SharedData data = new SharedData();

Producer p = new Producer(data);

Consumer c = new Consumer(data);

p.start();

c.start(); } }

public class Producer extends Thread

{

private SharedData data;

public Producer(SharedData d) {

data = d; }

public void run() {

for (int i = 1 ; i <= 8 ; i++) {

 data.setSharedData(i);

 System.out.println("Producer produced " + i);

 try {sleep((int)(Math.random() * 1000)); }

 catch (InterruptedException e) { }

 } } }

public class Consumer extends Thread {

private SharedData data;

public Consumer(SharedData d) {

data = d; }

public void run() {

int local;

for (int i = 1 ; i <= 8 ; i++) {

 try {sleep((int)(Math.random() * 1000)); }

 catch (InterruptedException e) { }

 local = data.getSharedData();

 System.out.println("Consumer used " + local);

} } }

public class SharedData {

private int [] value;

public SharedData() {

	value = new int [1000000];

public void setSharedData(int [] n) {

for (int i = 0; i < 1000000; i++)

value [i]= n[i]; }

public int getSharedData(int i) {

return value[i]; } }

class SharedData {

private int value;

private boolean writeOK = true;

public synchronized void setSharedData(int n) {

if (! writeOK) {

 try { wait(); }

 catch (InterruptedException e) { } }

value = n;

writeOK = false;

notify(); }

public synchronized int getSharedData() {

if (writeOK) {

 try { wait(); }

 catch (InterruptedException e) { } }

writeOK = true;

notify();

return value; } }

class SharedData {

private final int BUF = 500;

private int sharedInt[] = new int[BUF];

private boolean writeOK = true;

private boolean readOK = false;

private int readLoc = 0, writeLoc = 0;

public synchronized void setSharedData(int val){

 while (!writeOK) { try { wait(); }

 catch (InterruptedException e) { } }

 sharedInt[writeLoc] = val;

 readOK = true;

 writeLoc = ++writeLoc % BUF;

 if (writeLoc == readLoc) writeOK = false;

 notify(); }

public synchronized int getSharedData() {

 int val;

 while (!readOK) { try { wait(); }

 catch (InterruptedException e) { } }

 writeOK = true;

 val = sharedInt[readLoc];

 readLoc = ++readLoc % BUF;

 if (readLoc == writeLoc) readOK = false;

 notify();

 return val; } }

Sum = 45000545

Elapsed Time = 47 milliseconds

public class ThreeDArray {

public static void main(String s[]) {

int [][][] X;			// declaring the 3-D array

X = new int [2][3][5];	// defining the 3-D array

display(X); }

public static void display(int [][][] X) {

for (int i = 0 ; i < X.length ; i++)

 for (int j = 0 ; j < X[i].length ; j++)

 for (int k = 0 ; k < X[i][j].length ; k++) {

 X[i][j][k] = (i+1) * (j+1) * (k+1);	 System.out.print ("X[" + i + "][" + j + "][" + k +"] = " + X[i][j][k]);

 System.out.println(""); } } }

3

6

8

4

9

2

1

import java.util.*;

public class TestEnumerationFactory {

public static void main(String [] s) {

int [] myArray = { 3,6,8,4,9,2,1};

Enumeration enumer = ArrayToEnumeration.makeEnumeration(myArray);

while (enumer.hasMoreElements())

	System.out.println("" + enumer.nextElement());

} }

import java.lang.reflect.Array;

import java.util.*;

public class ArrayToEnumeration {

public static Enumeration makeEnumeration(final Object object) {

Class classType = object.getClass();

if (! classType.isArray())

 throw new IllegalArgumentException(object.getClass().toString());

else {

 return new Enumeration() {

 int size = Array.getLength(object);

 int current;

 public boolean hasMoreElements() {

 return current < size; }

 public Object nextElement() {

 return Array.get(object, current++); } };

} } }

import java.util.*;

import java.awt.Point;

public class VectorTest {

public static void main(String arg[]) {

Vector v = new Vector();

Point f = new Point(2,3);

v.addElement("Abagail");

v.addElement(f);

v.addElement(new Integer(7));

v.addElement(new Point(1,8));

if (v.contains("Abagail")) {

 int i = v.indexOf("Abagail");

 System.out.println("Abagail at index " + i); }

if (v.contains(f)) {

 int i = v.indexOf(f);

 System.out.println(f + " at index " + i); }

if (v.contains(new Integer(7))) {

 int i = v.indexOf(new Integer(7));

 System.out.println(new Integer(7) + " at index " + i); }

if (v.contains(new Point(1,8))) {

 int i = v.indexOf(new Point(1,8));

 System.out.println(new Point(1,8) + " at index " + i); }

if (new Point(5,6).equals(new Point(5,6)))

 System.out.println("Match 1");

if (new Integer(5).equals(new Integer(5)))

 System.out.println("Match 2"); } }

Output

import java.util.*;

import java.awt.Point;

public class HashtableTest {

public static void main(String arg[]) {

Vector v = new Vector();		Point f = new Point(2,3);

Point g = new Point(1,8);		String name = "Abagail";

Integer myInt = new Integer(7);	Integer yourInt = new Integer(67);

Employee emp;

Hashtable h = new Hashtable(1001 , (float) 0.75);

emp = new Employee("McGraw", "Daniel");

h.put(f.toString(), f); 			h.put(g.toString(), g);

h.put(name, name);			h.put(myInt.toString(), myInt);

h.put(yourInt, yourInt);		h.put(emp.getFirst(), emp);

Enumeration enumer;

StringBuffer sb = new StringBuffer();

enumer = h.elements();

while (enumer.hasMoreElements())

 sb.append(enumer.nextElement()).append(" -- ");

System.out.println("Contents of Hashtable:\n\n" + sb + "end of data.");

System.out.println("Size of Hashtable is " + h.size());

Enumeration enumer2;

StringBuffer sb2 = new StringBuffer();

enumer2 = h.keys();

while (enumer2.hasMoreElements())

 sb2.append(enumer2.nextElement()).append(" -- ");

System.out.println("\nContents of Hashtable keys:\n\n" + sb2 + "end of data."); } }

import java.io.*;

import java.util.Properties;

public class Friends {

public static void main (String args[]) throws IOException {

 String header = "These Are My Friends' Phone Numbers";

 Properties props = new Properties();

 props.load (new FileInputStream ("friends.dat"));

 props.setProperty ("Evan", "555-1212");

 props.store (new FileOutputStream ("friends.dat"), header);

 props.list (System.out);

 System.out.println ("Betty: " + props.getProperty ("Betty"));

}}

-- listing properties --

Fred=(860) 377-7878

Mary=(860) 555-6799

Evan=555-1212

Bill=(860) 886-8411

Bob=(860) 234-7878

Betty=(860) 544-4422

Ed=(860) 233-7699

Jim=(860) 677-8987

John=(860) 233-7761

Betty's Number: (860) 544-4422

Output

TreeSet

HashSet

Linked List

Abstract Sequential List

Array List

Abstract Set

Abstract List

Abstract Collection

Sorted Set

Set

List

Collection

TreeMap

HashMap

Abstract Map

Sorted Map

Map

import java.util.*;

public class PlanetSet {

public static void main (String args[]) {

String names[] = {"Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn", "Uranus",

 		 "Neptune", "Pluto"};

int namesLen = names.length;

Collection planets = new ArrayList();

// build the collection

for (int i=0; i < namesLen; i++)

 planets.add (names[i]);

Iterator it = planets.iterator();

while (it.hasNext())

 System.out.println (it.next());

 planets.remove (names[3]);

 System.out.println (names[1] + " " + planets.contains(

 names[1]));

 System.out.println (names[3] + " " + planets.contains(

 				 names[3])); }}

Mercury

Venus

Earth

Mars

. . .

Venus true

Mars false

Output

import java.util.*;

public class MoonSet {

public static void main (String args[]) {

String names[] = {"Metis", "Adrastea", "Amalthea", "Thebe",

"Io", "Europa", "Ganymede", "Callisto", "Leda", "Himalia","Lysithea", "Elara", "Ananke", "Carme",

"Pasiphae", "Sinope" };

SortedSet moons = new TreeSet ();

int namesLen = names.length;

int index;

// shows no duplicates Set policy

for (int i=0; i < 100; i++) {

 index = (int)(Math.random()*namesLen);

 moons.add (names[index]); }

System.out.println ("All Moons");

Iterator it = moons.iterator();

while (it.hasNext()) {

 System.out.println (it.next()); }

	

Set lastMoons = moons.tailSet("Leda");

it = lastMoons.iterator();

System.out.println ("\nLast Moons");

while (it.hasNext()) {

 System.out.println (it.next()); }} }

import java.util.*;

public class DiameterMap {

public static void main (String args[]) {

String names[] = {"Mercury", "Venus", "Earth", "Mars",

 "Jupiter", "Saturn", "Uranus",

 "Neptune", "Pluto"};

float diameters[] = {4800f, 12103.6f, 12756.3f, 6794f,

 142984f, 120536f, 51118f,

				 49532f, 2274f};

Map map = new TreeMap();

for (int i=0, n=names.length; i < n; i++)

	map.put (names[i], new Float (diameters[i]));

Iterator it = map.keySet().iterator();

Object obj;

while (it.hasNext()) {

	obj = it.next();

 System.out.println (obj + ": " + map.get(obj)); }

} }

Earth: 12756.3

Jupiter: 142984.0

Mars: 6794.0

Mercury: 4800.0

Neptune: 49532.0

Pluto: 2274.0

Saturn: 120536.0

Uranus: 51118.0

Venus: 12103.6

Output

public class Player implements Comparable {

private String name;

private int score;

public Player(String name, int score) . . .

public void setScore(int score) {

	this.score = score; }

public int getScore() { return score; }

 . . .

public int compareTo(Object obj) {

 if (! (obj instanceof Player)) return 0;

 Player player = (Player) obj;

 return player.getScore() - getScore(); }}

Example

public class Sorter {

. . .

public void sort() {

java.util.Arrays.sort(data, new MyComp()); }

. . .

} // Sorter

class MyComp implements java.util.Comparator {

public int compare(Object o1, Object o2) {

String [] a = (String[]) o1;

String [] b = (String[]) o2;

return a[2].compareTo(b[2]); }

public boolean equals(Object o) {

	return false;

}

} // MyComp

void printClassName(Object obj) {

System.out.println("The class of " + obj + " is " +

obj.getClass().getName());

import java.lang.reflect.*;

public class ClassLister {

public static void main(String[] args) {

for(int i = 0; i < args.length; i++) {

 try {

 Class c = Class.forName(args[i]);

 System.out.print(Modifier.toString(c.getModifiers()) + " ");

 System.out.print(c);

if (!(c.toString().equals("java.lang.Object")))

 System.out.println(" extends " + c.getSuperclass());

 Class[] interfaces = c.getInterfaces();

 if (interfaces.length > 0) System.out.println(" implements ");

 for (int j = 0; j < interfaces.length; j++) {

 if (j < interfaces.length - 1)

 System.out.println(interfaces[j] + ",");

 else System.out.println(interfaces[j]); }

 System.out.println("{");

 System.out.println();

Field[] fields = c.getDeclaredFields();

 for (int j = 0; j < fields.length; j++) {

 System.out.println(" " + fields[j] + ";");}

 System.out.println();

Constructor[] constructors = c.getDeclaredConstructors();

 for (int j = 0; j < constructors.length; j++) {

 System.out.println(" " + constructors[j] + " {}"); }

 System.out.println();

 Method[] methods = c.getDeclaredMethods();

 for (int j = 0; j < methods.length; j++) {

 System.out.println(" " + methods[j] + " {}"); }

 System.out.println();

 System.out.println("}");

 }

 catch (Exception e) {

 System.err.println(e); } } } }

Class c = null;

try {

c = Class.forName("Producer"); }

catch (ClassNotFoundException cnfe) { }

int modifiers = c.getModifiers();

boolean isPublic = Modifier.isPublic(modifiers);

System.out.println("isPublic " + isPublic);

boolean isPublic = Modifier.isPublic(modifiers);

import java.lang.reflect.*;

public class PrintPi {

public static void main(String[] args) {

 try {

 Class math = Class.forName("java.lang.Math");

 Field PI = math.getField("PI");

// parameter is null since PI is a constant field

// otherwise an object would be needed

 double pi = PI.getDouble(null);

 System.out.println("PI is " + pi); }

 catch (Exception e) {

 System.err.println(e); }

} }

PI is 3.141592653589793

output

import java.lang.reflect.*;

public class SinPi {

 public static void main(String[] args) {

 try {

 Class math = Class.forName("java.lang.Math");

 Class[] params = new Class[1];

 params[0] = Double.TYPE;

 Method sin = math.getMethod("sin", params);

 Object[] arg_list = new Object[1];

 arg_list[0] = new Double(3.141529);

// if Math.sin was not static

	// we would specify the object

	// as first parameter

 Double d = (Double) sin.invoke(null, arg_list);					

							 	System.out.println("The sine of Pi is " + d); }

 catch (Exception e) {

 System.err.println(e); }

}}

The sine of Pi is 6.365358975045955E-5

output

grant codeBase "file:C:/Julius/apps/" { � permission java.io.FilePermission "*.txt", "delete"; �};

private SecurityManager smgr;

. . .

System.setSecurityManager(smgr = new SecurityManager());

PAGE
Page 288
	MultiThreading, Collections, Reflection, Security
	

	The material in this document must not be reproduced without the written consent of Julius Dichter

Julius Dichter © 2004, 2005

	

