CS 400 – BASIC Language Interpreter

This assignment is the first part of a project divided into three different parts. The project is related to developing a BASIC language interpreter in C++ using object-oriented design. In this part, you will be developing a SYNTAX analyzer (also known as a parser) for a subset of the original BASIC language. In the second part, you will be implementing the expression evaluation and in the last part, you will develop the symbol table and implement the semantics of the BASIC language.

The BNF (Backus Naur Form) grammar is given to you for a simplified sub-set of the original BASIC language on the next page. You are asked to write a RECURSIVE DESCENT PARSER in C++ for this grammar. Test your program with very simple examples according to the BASIC BNF rules.

After the parser has been implemented and you are sure it is working correctly, check it for the following BASIC program and report on its syntactic correctness.

10 A = 28

20 B = B + 8 * (9 + C – D)

30 C = X > (Y + 2)

40 GOSUB 2000

50 Y = A + C2

60 OUTPUT A, B, Y, D

70 INPUT C, Y + 2, X

80D=X+Y

90 Y + 2 = C + 5 – 2

100 ENN

Your program should indicate meaningful error messages if a syntax error is encountered in parsing a statement. Try making a few changes in the code above and see if your parser is behaving as you expect.

------------------simplified BNF for a subset of original BASIC language---------------

<SIMPLE BASIC STATEMENT>
::=
<LINE NUMBER> <ASSIGN STATEMENT> CR |

<LINE NUMBER> <IF STATEMENT> CR |

<LINE NUMBER> <GOTO STATEMENT> CR |

<LINE NUMBER> <END STATEMENT> CR |

<LINE NUMBER> <READ STATEMENT> CR |

<LINE NUMBER> <WRITE STATEMENT> CR |

<LINE NUMBER> <GOSUB STATEMENT> CR |

<LINE NUMBER> <RETURN STATEMENT> CR

<ASSIGN STATEMENT> ::= <VARIABLE> = <EXPRESSION>

<IF STATEMENT> ::= IF <EXPRESSION> THEN <BRANCH>

<BRANCH> ::= <LINE NUMBER>

<LINE NUMBER> ::= <DIGIT> | <LINE NUMBER> <DIGIT>

<GOTO STATEMENT> ::= GOTO <LINE NUMBER>

<END STATEMENT> ::= END

<READ STATEMENT> ::= INPUT <VARIABLE LIST>

<VARIABLE LIST> ::= <VARIABLE> | <VARIABLE LIST> , <VARIABLE>

<WRITE STATEMENT> ::= OUTPUT <VARIABLE LIST>

<GOSUB STATEMENT> ::= GOSUB <LINE NUMBER>

<RETURN STATEMENT> ::= RETURN

<EXPRESSION> ::= <ARITH> | <ARITH> <RELATION> <ARITH>

<RELATION> ::= < | > | =

<ARITH> ::=
<TERM> |

<ARITH> + <TERM> |

<ARITH> – <TERM> |

- <TERM> |

+ <TERM>

<TERM> ::=
<OPERAND> |

<TERM> * <OPERAND> |

<TERM> / <OPERAND>

<OPERAND> ::= <NUMBER> | <VARIABLE> | (<EXPRESSION>)

<NUMBER> ::= <DIGIT> | <NUMBER> <DIGIT>

<DIGIT> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<VARIABLE> ::= A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

