A pointer is a variable which has a value which is an address.

int k = 6, * p = &k;

// Now p points to k.

int m = 8;

p = &m;

// Now p point to m

A typical pointer can take on values of different addresses at different times.

If you print a pointer like

cout << "p = " << p << endl;

It will print something like:

0x341a5b2a

That is a hex (base 16) value. You see a pointer is typically a 32-bit address, and since C++ knows that a pointer is an address it prints it in hex because it is easier for humans to read the bit representation from a hex address rather than from a decimal representation.

That is, 0x341a5b2a means (0x just means the value you see is hex)

341a5b2a means (using binary from hex notation)

 3 4 1 a 5 b 2 a

0011 0100 0001 1010 0101 1011 0010 1010

If you want to print out the value stores AT the address ox341a5b2a,

then you have to dereference the pointer:

cout << *p << endl;

which prints 8 (because m has a value of 8, abd p points to it)

Also, the code

(*p)++;

Increments the value stored at m. Now m has a value of 9!

The biggest difference in references versus pointers is that references DO NOT have to be de-referenced.

if we write

int & ref = m;

Writing

*ref

is ALWAYS wrong as it is not a pointer.

However, the code

ref++;

makes the value of m equal to 10. References cannot be changed. This means that ref cannot be connected with another int variable with code such as:

int j = 7;

ref = j;

This works BUT ... we have just set m equal to 7. The reference ref is still connected to m!!

