The problem of no copy constructor!

This problem can occur in programs which do not write a copy constructor or an assignment operator, and delete dynamic memory in the destructor.

This handout discusses the problem with respect the Poly class as introduced in the 4th chapter of our book.

A copy constructor makes a copy of the object in cases when an object is passed by value, returned by value, or a new object is initialized from an existing object.

In the +() operator

Poly Poly::operator +(const Poly &q)

{

int *c, *a, *b, *tmp;

int len, d;

len = length()+q.length()-1;

d = 1+2*(1+ MAX(degree(), q.degree()));

len = MIN(len, d); // max length of answer

// tmp = c = new(int[len]); // temporary space for result

// JD

tmp = c = new int[len]; // temporary space for result

a = pol;

b = q.pol;

while (*a >= 0) // for each term of a

{

while(*b > *a) // terms in b of higher power

{

*c++ = *b++;

*c++ = *b++;

}

*c++ = *a;

if (*a == *b)

// add terms of like power

{

*c = *++a + *++b;

if (*c++ == 0)

c -= 2; // terms canceled

b++;

}

else

*c++ = *++a; // no terms to combine

a++;

}

while (*b >= 0)

{

*c++ = *b++;

*c++ = *b++;

} // add left over terms in b

*c = -1; // terminator marker

Poly answer(tmp, (c-tmp)/2); // answer object

delete []tmp; // free temporary space

return(answer); // answer copied into return value

}

the code returns a Poly object as a return value.

The returned object has no name, but it IS an object in its own right.

 Eventually that object goes out of scope, and the destructor

Poly::~Poly()

{

if (pol!=NULL) {

cout << "pol NOT NULL\n";

 delete [] pol;

}

else

cout << "pol is NULL\n";

}

has to execute. Therefore the destructor tries to delete [] the return value's Poly's pol dynamically allocated array. Problem IS that the return Poly is a copy of the local Poly which was the return value of the +() operator

return(answer);

SO ... answer in the +() operator scope

and the unnamed Poly object returned from the +() operator are really TWO objects. If you do not define a copy constructor, a default one is provided.

The default constructor copies the object member by member. Pointers are copied the same way. Since pol is a pointer, it's value is an address of the first element of the pol array.

In short, both the answer Poly in the +() code and the Poly returned from the +() code are two different Poly objects, BUT they share the same array due to the copy construction.

When the destructor fires on the first one, all is good. The pol for array is NOT NULL and the memory is returned to the heap. BUT when the destructor fires on the +() return Poly, it tries to return to the heap the same memory again - THAT IS WHAT causes the exception.

It is interesting that when the destructor executes on the badly copied object, the polynomial array (pointer) is NOT NULL, it has the same value as the previously destructed object. Problem is, that memory is already returned once, so the address is invalid.

Here is the code for a proper copy constructor which frees the dynamic (heap-allocated) memory from its host object. A simpler destructor is shown below.

Poly::~Poly() {

 delete [] pol; }

The code for *() (see below) will not work without considering the =() operator.

The operator *() will NOT work because assignment has the same problem as copy constructor.

For example

p1 = p2, where both are Poly objects will assign the pol pointer from p2 into p1. Therefore when a destructor is called on the first one it is ok, but when the second one is destructed, the same error will appear.

The following *() operator code has the problem of using an assignment operator. This is fine as long as the operator is overloaded so that the host getting the assignment has its own allocation of the polynomial buffer (array).

Poly Poly::operator *(const Poly &q)

{

int *c, *a, *b, *tmp;

int len, d;

len = ((length()-1)/2*(q.length()-1)/2)*2+1;

d = 2*(degree()+q.degree())+1;

len = MIN(len,d);

a=pol;

b=q.pol;

Poly finalAnswer;

while(*a>=0)

{

tmp =c= new int [len];

while(*b>=0)//for each term of b

{

*c++ = *b++ + *a++;

*c++ = *b++ * *a++;

a=a-2;//back to this term again

}

*c=-1;

Poly tempPoly(tmp,(c-tmp)/2);

finalAnswer = finalAnswer + tempPoly;

delete []tmp;

a=a+2;//change to next term

b=q.pol;

}

return finalAnswer;}

What is the solution? You need to overload the =() in a similar way as the copy constructor.

