Destructors and Dynamic Heap Memory

The new operator allocates memory from the Heap

The delete operator de-allocates memory back to the Heap

WHAT is the HEAP?

The Heap is a data structure which holds a lot of memory for C++ programs, and gives it to functions and methods calling new.

Heap memory is manual, not automatic.

For example, in the following functions

void f () {

Poly p;

}

void g() {

float f;

}

p and f are local variables (objects). Memory for them is allocated on the stack, and when the function returns, that memory is automatically de-allocated from the stack.

In the following function

int * h() {

int * p = new int;

*p = 7;

…

return p; }

we have allocated a new int - it has no name, BUT p points to it.

p

7

Suppose we have the call to h()

int * ip = h();

cout << *ip;

After h() returns p is automatically de-allocated! It does not exist. But the int object which has a value of 7, but no name still exists. It is allocated from the heap memory.

BUT ip still exists

AND, we now have

ip

7

The int object with the value 7 will continue to live until a delete operation is called on it.

For example

delete ip;

will return the memory of the int object with value 7 back to the Heap manager.

If we rewrite the code to work with objects, let’s use the Rational class, for example

Rational * h() {

Rational * p = new Rational(2,3);

…

return p; }

And if h() is called from another function

void someFunction() {

Rational * rp = h();

…

}

then an unnamed (anonymous) Rational object with value 2/3 is created in h(), lives on in someFunction(), and will live forever (well, as long as the program is still executing) unless a destructor is called.

BUT we cannot call a destructor, it gets called when an object goes out of scope.

OR, when a heap-allocated object has delete called on it. So if someFunction() looks like this:

void someFunction() {

Rational * rp = h();

…

delete rp; }

then our anonymous Rational object is sent back to the heap!

IF the delete is NEVER called in someFunction() then we would get a stranded object – it has no pointers left to it. We can never get access to it again.

Below are some questions and answers regarding dynamic memory

1.does that mean when the destructor fires on the first one(when outside the function), this object will be destroyed, then the pol should be also destroyed. Is that right?

>>>
The object is destroyed in this case means that the heap memory manager reclaims the memory. That means it can be reassigned to another call to the new operator.
>>>

2.If it is the case, then the unnamed Poly returned by the function is sharing the pol with the answer Poly, so the contents will be invalid. Is that right? so there will be no result to display.

>>>
Not exactly. If I have a Poly in a, say main() scope, and I pass that by value to a method, then the formal parameter shares the pol buffer with the actual parameter (assuming you do not define the copy constructor). When the function returns the formal is destructed and the array is returned. Problem is that the main() scope Poly still has the address of the array in its pol pointer.

If the actual Poly references the array, it may work fine, or it may access garbage. C++ will not check if you are referencing memory from the heap which is your or has been already returned. If that memory has not been reallocated to another new call, the data is likely still intact, but if it has ... then there is no telling what is there. In a sense the actual Poly has a dangling reference to an address which is no longer its own.
>>>

3.By the way, can u tell me when the destructor will fires on the unnamed poly?

>>>
I don't know. It depends when the system calls it. If you trace the VC++ program you may find that the destructors all tend to run at the end. The timing is neither specified, neither required. C++ will not run out of memory unless it fires all remaining constructors, which potentially can release lots of memory.
>>>

4.how about return the poly by reference? so there should be only one poly object? but the answer poly is a local member, isn't that it should be destroyed outside the scope? Is that a very bad idea return a local member by reference?

>>>
It is a terrible idea: never do it. Any such object is immediately unstable!
>>>

