Random Access Binary Files Handout

The Handout covers random access files and binary files. These two concepts often are used together.

Binary files means that the files store data the same as it is stored inside the computer memory. For example, if a the statement in the C++ code reads

k = 15;

the memory location where k is stored has bits that look like:

00001111|00000000|00000000|00000000

An int takes typically 4 bytes of storage.

If we have fstream objects 2 files, a text file ftext, and a binary file fbinary we could write the k int to them as follows

ftext << k;

result => 2 bytes (or characters) ‘1’ and ‘5’ are written back-to-back into the file. When we look at the file we can read 15 because the file stores the 1-byte integer numbers 49 followed by 53.

The file contents are:

00011001|00011101

The text editor (or word processor) shows the associated characters 15 (see ASCII chart)

The characters in C++ are stored as small (1-byte) integer values. Here is the complete ASCII chart:

[image: image1.png]Dec Hex Char Dec Hex Char | Dec Hex Char | Dec Hex Char
o o0 32 20 Space | 64 4D @ 56 60
101 Stertof heading 33 21 1 65 a1 & 57 61 a
2 D2 Strtorted 34 22 66 42 B %8 62 b
3 03 Endoftext 35 23 4 67 a3 ¢ 99 63
4 04 Endoftransmit 36 24 ¢ 68 aa D 100 64 a
5 05 Enury 37 25 % 63 a5 E 101 65 e
6 06 Acknowkdge 38 26 < 0 46 F 102 66 f
707 Audbebel s 27 7147 G 103 67 o
8 D8 Backspace 40 28 | 72 48 H 104 68 n
9 09 Horizortaltah a1 29 73 49 1 105 69 i
10 DA Liefesdt a2 za ¢ 74 4a a 106 64 3
11 DB Vercatas 43 2B + 75 4B K 107 6B k
12 0C Formfeed 4 2c 76 4c L 108 6C 1
13 0D Carageretun as 2p - 77 4 u 109 6 n
14 DE Sniftout 46 2E . 7 4E N 110 6E =n
15 OF sntin a7 2F 79 4F o 111 6F o
16 10 Datalikescape 48 30 0 s0 S0 P 112 p
17 11 Device contral1 49 31 1 81 51 o 13 7 g
18 12 Device control2 so sz 2 82 52 R 114 72 r
19 13 Device control3 5133 3 83 s3 s 115 7 s
20 14 Device controld sz 34 4 8a 54 T 116 74 ¢
21 15 Nepacknowedge| 53 38 5 85 55 U 117 75w
22 16 Synchonouside | 54 36 6 86 56 v 118 76 v
23 17 Endtrans.biock ss 37 7 87 57 W 115 77w
24 18 Cancel s6 38 8 88 S8 x 120 78 x
25 19 Endof medum 57 39 9 89 59 ¥ 121 78y
26 13 Substtution S8 aa o0 sa 2z 122 7 2
27 1B Escape 59 3B o1 8B [123 7 ¢
28 1C Fie separstor 60 3C < sz sc 124 7C |
29 1D Group separator 61 3D s sp] 125 M
30 1E Recodseparator | 62 3E > 9 sE * 126 7E -
31 1F Unit separator 63 3F 2 95 SF 127 7F O

ASCII Character Set and Values for Characters

fbinary.write ((const char *) & k, sizeof (int));

result => 4 bytes are written to the binary file. These bytes are

00001111|00000000|00000000|00000000

The text editor (or word processor) cannot show you what is there. That is because the text editor only shows characters. It will “display” 3 NULL characters followed by a SHIFT in character. These characters are NOT displayable, so they will look like garbage to the person viewing the file.

If I open the data.out binary file using VC++ binary editor (also knows as a hex editor) You can see the small window showing the binary data.

The contents are

000000
0F 00 00 00

….

000000 represents the starting address in the file it is 000000 hex, which is just 0

If the address read (in a bigger file) 000100, that would mean address of 256.

If the address read (in a bigger file) 000210, that would mean address of 528.

Each hex digit is 0, 1, 2, 3, … 9, a, b, c, d, e, f (0 – 15)

210 means 2*16^2 + 1* 16^1 + 0*16^0, which just equals 528 (base 10).

[image: image2.png]| Fie Edh view nsen Priect Buid Took Window Hel

lalzmd|s %a\ﬁvﬁv\Ff%‘\ﬂlﬁ\h
| E=a [5okl members)

i WS BEIE]
EE ‘Workspace ‘binaryFile": 1 project(s [pp

& binaryFile files
ER=1

Finclude <iostrean>
ce Files #include <istream>

)

000000 DE 00 00 00
Ly I |

int k = 15;
fout write((const char *) & k. sizeof(int)):

fout .clase():

return 0: }

=3 ClassViow | (2] Fievien

Linking

——Configuration: binaryFile - Win3Z Debug—

L lx |

binaryFile.exe - 0 error(s). 0 varning(s)

Ready 01000000 | Len 000004 [0VA[E 0 |

Here is the screen output when I run RatonalTest.cpp

(http://www.bridgeport.edu/~dichter/cs400S/RationalTest.cpp)

(670/913)

(581/457)

(191/698)

(719/932)

(205/94)

(117/127)

(239/42)

(313/519)

(35/9)

(89/845)

The reason the Rational objects are in the form

(<top> , <bottom>)

is due to the implementation of the output << () operator.

ostream & operator << (ostream & out, const Rational & value) {

 if (value.denominator() != 1)

out << "(" << value.numerator() << '/' << value.denominator() << ")";

 else

out << "(" << value.numerator() << ")";

 return out; }

The file which is generated is called “rationalBin.dat” but any name could be used.

You can view this file using the VC++ hex editor. Here are the contents:

The next page shows the hex editor. Note that the viewing is in three parts.

1. the start address

2. the hex code for each character

3. the text representation of the character

[image: image3.png]2 handout BinaryRandomFiles.dos - Microsoft Word

| [l Edt View Insett Fomat Tooks Table Window Help

T D & Wi

Rational - Miciosalt Visual G+
=

| Fie Edh view nsen Priect Buid Took Window Hel

|aza@ i ne o - [EEE | e Zl\u
| === [s menbers) 1] & fwrite
i WS

— 1]

Rational::Rational() : top(0 El

. bottom(1) { }

Rational::Rational(int nunerator) : top(numeratar) {
Bottom = 1; }

Rational::Rational(int nunerator, int denomimator) : top(numerator). botton(denominator
{ nornalize(): }

Rational ::Rational(const Rational & source) . top(source numerator())
£ rationalBin dat
3

000000 SE 02 00 00 51 03 00 00 45 02 00 00 C5 01 00 00

©ostrean & operat| 000010 BF 00 00 00 BA 02 00 00 CF 02 00 00 A4 03 00 00

if (value denon| 000020 CD 00 00 00 SE 00 00 00 75 00 00 00 7F 00 00 00
cut << "(* <| 000030 EF 00 00 00 24 00 00 00 39 01 00 00 D7 02 00 O

else 000040 23 00 00 00 09 00 00 00 53 00 00 00 4D 03 00 O
cut << "(* | 000050

return out:}

void Rational::fwrite(ostrean & out) {
out write((const char *)this, sizeof (Rational)):

void Rational::fread (istream & in) {
in read((char x)this, sizeof (Rational)):
b

int Rational::numeratar() const {
return top: }

int Rational::denominator() const {
return bottom: }

void Rational::ioperator = (const Rational & right) {
top = right.nunerator():
Bottom = right.denominator(): }

void Rational::operator += (comst Rational & right) {

top = top * right.denominator() + bottom * right.numerator():
botton *- right denominator():

nornalize(): }

101 000000 Lon 000000 v - 0|

Stan | BYSTS Fes. | =) Wivdows .|) Semch .| ALJCAVINNT. | () Nescape | (5 TheExen [0 Ftional.. BY'CAeky. | @randoutbi.| _ Your poem CEOBOEMDT] 1w

Each line in this editor is 16 characters, so the addresses in the left column are:

000000, 000010, 000020, 000030, 000040, 000050, that is 0, 16, 32, 48, 64, 80 (base 10)

A total of 80 bytes are written since each Rational object has 2 bytes of private data, two ints (top and bottom), each having a 4-byte requirement.

9E 02 00 00 represents the binary string

10011110 00000010 00000000 00000000

Remember each hex digit can be expanded into 4 bits!

1001 = 9, 1110 = E, etc …

These four bytes are the numerator of the first Rational object written. Note that the bytes are in reverse order. First byte should be right-most, second byte should be next left-most., etc …

When you reorder them (in your mind) they look like this:

00000000|00000000|00000010 |10011110

Adding up all the values, we see that this represents a 670, which is the numerator for the first Rational object written (see the text output on page #4 of this handout)

Random Access Files

Random access means that we can move to any position in the file. The term offset means how far you are in the file.

When we first open a file for reading and writing

fstream ioFile("rationalBin.dat", ios::in | ios::out);

we are at its beginning, really offset = 0;

If we know that the file contains only Rational objects we can tell how many objects are in the file.

ioFile.seekg(long(0), ios::end);

unsigned long fileSize = ioFile.tellg();

int objectCount = fileSize / sizeof(Rational);

cout << "File has " << objectCount << " Rational objects\n";

Method tellg() shows how many bytes from the beginning of file you are. After moving to the end of the file, we call it. Then we divide if by the number of bytes that a Rational object requires for storage.

The program responds =>

File has 10 Rational objects

In program RationalTest2.cpp

http://www.bridgeport.edu/~dichter/cs400S/RationalTest2.cpp
we process the file created by the RationalTest.cpp program. Each Rational that was written into the rationalBin.dat file is read and echoed to the screen. Then, we move to the beginning of the file, and read again. But this time after reading, any Rational object which is an improper fraction (top > bottom) is corrected in the file to be a proper fraction.

The following code does the job:

ioFile.clear();

ioFile.seekg(long(0), ios::beg);

while(! ioFile.eof()) {

rValue.fread(ioFile);

if (rValue.numerator() > rValue.denominator()) {

 rValue = Rational(rValue.denominator(),rValue.numerator());

 ioFile.seekg(long(-sizeof(Rational)), ios::cur);

 rValue.fwrite(ioFile); } }

First we clear all flags. This includes the EOF (end of file) flag. If we don’t, then eof() would return true even if we positioned back to the beginning of the file.

Then we seek back to the beginning.

Then we read a Rational object from the file, using the fread() method (defined on the Rational class).

If the object is improper, we create a new object with the code

rValue = Rational(rValue.denominator(),rValue.numerator());

Then we have to move back to the beginning of that object in the file. And we use the fwrite() method to change the file.

PAGE
1
CS 400 Handout - Julius Dichter © 2004

