Handout on Copy Constructors

A copy constructor is a constructor, that means it is used to make new instances of a class.

Let’s consider two classes: Rational class and Poly class

Here is the header for the Rational class

class Rational {

public:

Rational ();

Rational (int);

Rational (int,int);

Rational (const Rational &);

int numerator () const;

int denominator () const;

void operator = (const Rational &);

void operator += (const Rational &);

Rational operator + (const Rational &);

void fwrite(ostream &);

void fread (istream &);

private:

int top;

int bottom;

void normalize();

int gcd(int,int); };

The code

Rational (const Rational &);

is a copy constructor for the class.

Every class has a copy constructor. If you do not create one, there is automatically a default one created.

When is a copy constructor used?

Actually, three times.

1. object initialization

2. pass object by value

3. return object by value

case 1.

Rational rat1(2,3);

// the int/int constructor creates rat1

Rational rat2 = rat1;

// we create rat2 by copy construction

In the second code line, rat2 is the host. The host is the object being constructed. The object rat2 is the parameter.

The default copy constructor assigns corresponding properties on the host to values in the parameter. So … top of the host is assigned top of the parameter. Similarly, the bottom property is assigned.

This IS basically what we want to happen, so we do not think about it much. if we were to write the copy constructor to do the same, here would be the code.

Rational::Rational (const Rational & rat) {

top = rat.top;

bottom = rat.bottom; }

The copy constructor for any class X ALWAYS has the same form:

X::X (const X &) { … }

case 2.

Suppose a method or function receives a Rational object as a parameter by value.

void someFunction1 (Rational rat) {

cout << “rat = “ << rat; }

Then the call

someFunction1(rat2)

sends actual parameter rat2 to the function. The formal parameter rat, needs to be constructed and its properties set. The copy constructor we wrote before does the job. rat’s properties are set to be the same as those of the actual parameter, rat2.

case 3

Suppose a method or function returns a Rational object by value.

Rational someFunction2 (int value) {

Rational rat(value, 1) ;

return rat; }

Then the call

Rational r;

r = someFunction2(8);

sends actual parameter of a constant 8 to the function. The function constructs a local Rational called rat using an int/int constructor. The local Rational object is then returned by value. That code (return rat) needs to create a return object in memory. The return object has no name, but it is every bit a Rational object. Therefore the copy constructor code constructs this anonymous object.

Later object r is assigned the return value in the code

r = someFunction2(8);

The anonymous object is copied again, this time into the r object. The =() actually accomplished the job!

Actually the assignment operator, operator =(), is quite similar to the copy constructor, and is also provided as a default to each new class.

Is this all I need to know??

No …

There are times when the code for the copy constructor and the assignment operator as exists in its default manner is not sufficient, and will cause HUGE problems!

To see why, we will examine the Poly class.

class Poly {

public:

 Poly() { }

 Poly(int *, int);

// constructor

 Poly operator+(Poly);
// poly addition

 Poly operator-(Poly);
// poly subtraction

 Poly operator*(Poly);
// poly multiplication

~Poly() { delete [] poly; }
// destructor

 unsigned int deg()
// degree

 { return(pol[0] > 0 ? pol[0] : 0); }

 void display();
// display host object

private:

 int length();

 int * pol; };

To see why a the class Poly needs a programmer-defined copy constructor, let’s look at the actual constructor code, as well as some sample code using the Poly class.

Poly::Poly(int*p,int terms) {

terms = 2*terms;

pol=new int[terms +1];

for(int i=0;i<terms;i++)

pol[i]=*p++;

pol[terms]=-1;

}

In the following code, we construct two Poly objects with specific data, and two others with the default constructor.

int p1[] = {5,15,3,-13,2,2,1,1,-1};

Poly poly1(p1, sizeof(p1)/sizeof(int)-1);

int p2[] = {2,3,1,2,0,-6,-1};

Poly poly2(p2, sizeof(p2)/sizeof(int)-1);

Poly p3;

Visually, here is what is happening:

If we have the following code:

Poly p4 = p1;

The default copy constructor copies the data members (object properties) from p1 into p4. Actually, there is only one data member, pol. Since it is a pointer, and a pointer’s value is an address, the address at p1.pol is copied into p4.pol. That means no new buffer is allocated, and that the result looks like

This sharing of the buffer can have very bad consequences. For example, if we modify the value of the Poly p1, we necessarily have a side effect that p4 is also modified. This means that p4 (and actually p1 also) do not have their own data. Changing one changes the other.

But the problem can be even worse.

Remember that a local object is created inside a method or function. It is constructed at the beginning of the function and it is destroyed at the end of the function.

For example,

void f(int m) {

int k;

…

}

Above, both m and k are created as function f begins and both are destroyed as it ends.

Now consider the abbreviated code for the overloaded operator + () for class Poly.

Poly Poly::operator + (Poly q) {

…

 Poly ans(tmp, (c-tmp)/2);

 delete tmp;

 return(ans); }

And examine the call

Poly p4;

p4 = p1 + p2;

Actually in this code, 6 operators or methods and 3 destructors will actually fire!!

Line 1 results in the Poly() executing

Line 2 is a more complicated sequence of executions:

a. +() is called

b. p2 is passed by value, so q is copy constructed from p2
c. Poly ans is char */int constructed locally

d. Both q and ans are destructed toward the end of the code

e. return ans copy constructs the return Poly of the operator +()
f. The return value of +() is assigned to p4 by the operator =()
g. The return Poly has to be destructed

Here is the problem. Poly p2 and Poly q share the same buffer. Therefore when local Poly q is destroyed its buffer is deallocated using the delete operator. Also the local Poly ans has a new buffer allocated. The it is copy constructed to the return anonymous Poly object. Then the anonymous Poly is assigned into p4. Again these three share the same buffer, and two of them on destructor calls, will delete (or try to delete) the buffer.

When you try to release allocated memory once, it is successful, but when you release the same memory again, it causes an exception. Therefore this type of programming will cause lots of program crashing.

If you remove the

delete [] pol;

from the destructor, then your program will be allocating memory for every newly constructed Poly, but never releasing it.

The solution is to write our own copy constructor as follows:

Here we assume that method length() returns the length of the array that holds the terms, including the –1 terminator value.

Poly::Poly(const Poly & p) {

int terms;

pol =new int[terms = p.length()];

for(int i=0;i<terms;i++)

pol[i]=p.pol[i];

}

Now each newly create object will have its own copy of the pol array, and whenever the object goes out of scope, the array can be deleted because it is the object’s sole possession, and it is not shared.

The same problem with shared buffers can occur with the assignment operator =().

The code

p4 = p2;

creates a shared buffer in the object p4.

So, how do we create a successful operator?

Poly::operator = (const Poly & p) {

pol =new int[p.length()];

for(int i=0;i < p.length();i++)

pol[i]=p.pol[i];

}

This code can be exactly the same as the copy constructor. The only difference is when each operator is applied.

As mentioned before, the copy constructor is applied in three different times (see page 2). You do not explicitly call it.

The assignment operator is only applied in an object assignment. You call it whenever an object is assigned another object.

Last note:

p4 = p2;

is object assignment
Poly p5 = p2;

is a copy constructor
p1

p2

5,15,3,-13,2,2,1,1,-1

2,3,1,2,0,-6,-1

pol

pol

pol

5,15,3,-13,2,2,1,1,-1

p1

pol

p4

PAGE
9

