Polynomial Program Handout

class Poly {

public:

Poly(int *p, int terms); // constructor

Poly operator + (Poly q); // poly addition

Poly operator - (Poly q); // poly subtraction

Poly operator * (Poly q); // poly multiplication

unsigned int deg() // degree { return(pol[0] > 0 ? pol[0] : 0); }

void display(); // display host object

/* other members */

private:

int length(); // length of pol

int * pol; };

The class Poly is a class that creates a type for a polynomial object. It has the data members for the polynomial (represented by the pol pointer), and appropriate behaviors for polynomial objects.

The data is stored in so-called sparse notation. That is, we store only the terms of the polynomial that are non-zero.

For example, the polynomial

3x8 - 5x6 - x2 + 4x -3

would be represented as an integer array

8 3 6 -5 2 -1 1 4 0 -3 -1

Each term is represented by two integer values. For example, 3x8 is represented by the values 8 and 3 (first two pol values). We have the exponent, followed by the coefficient.

8 3 6 -5 2 -1 1 4 0 -3 –1

Here we see each term is shown enclosed in the box. The last value in pol is just a terminator marker. We need it because we do not know the last term of a polynomial. In the above example the last term is -3 so the last term is stored as 0 –3 . But the last term could have been the 4x term, or even the 3x8 term.

A polynomial which has no terms, can be stored as –1.

What is pol?

This is nothing more that a data member which is an int *
(int pointer)

Since each polynomial can have a different number of terms, the number of elements for the int array pol cannot be known ahead of time. So it is during the constructor time that we allocate the pol pointer.

For example:

pol = new int [n]

allocates a buffer with n places for int values.

The actual Poly class constructor follows:

Poly::Poly(int *p, int n) { // constructor
n = 2*n;
pol = new int[n+1];
for (int i=0 ; i < n ; i++)
pol[i] = *p++;
pol[n] = -1; }

The constructor takes two parameters (formal parameters) and uses them to create an instance of the pol array.

Parameter 1 is an array which looks just like pol, but does not have a –1 as its last element. Parameter 2 is the number of terms the newly constructed polynomial should have.

The statement

pol = new int[n+1];

allocates a buffer for two int values for each polynomial term as well as adds one for the –1 terminator marker.

Next we copy the p array into the pol array (all n terms passed to the constructor). Finally, we place the –1 terminator into the last spot.

The polynomial has been constructed!

Why do we copy the array p into pol? Because we want the data of the Poly object to be private. Using

pol = p;

would be a poor code since the p array is accessible to the client code calling the Poly constructor!

The statement

pol[i] = *p++;

assigns into the pol array at index i the value of the int to which p is pointing.

Remember that an array is a pointer to its first element. AND its type is a pointer to the element type. So pol is an int * type.

Also p is an int * type. Since an array a pointer, C++ allows arrays and pointers to access the elements they refer to by either

*p or p[0] notation (access the first element)

or

*(p + i) or p[i]
(access the ith element)

Since

* p ++

has two operators, we need to know which has higher precedence. Actually it is ++. BUT since ++ follows its operand p, p does not get incremented until after the operation is completed. The * operator is a dereference operator, therefore it returns the value of the int at which p is pointing.

Note that the Poly class is stored as a sparse polynomial. No unnecessary terms are in the pol array. We must make sure that any Poly object always has that characteristic.

A client can have code such as:

#include “Poly.h”

int p1[] = { 3,5,0,4,-1}

int p2[] = { 3,2,1,4,-1}

Poly poly1(p1, 2); // create a two term Poly object p1

Poly poly2(p2, 2);

// we should have a display method to output the Polys

poly1.display();
// 5x^3 + 4

poly2.display();
// 2x^3 + 4x

Poly poly3; // we need a default constructor too!

// we should define a + () operator which returns a Poly

poly3 = poly1 + poly2;

poly3.display();
// 7x^3 + 4x + 4

// we should define a - () operator which returns a Poly

(poly1 – poly2).display();
// 3x^3 – 4x + 4

All the operations on the Poly class use pointers

Code such as

* c ++ = * b ++

assigns the value of the element that b is pointing at into the memory location that c is referring to. The ++ simply increments the pointers to the next int element.

The code below is equivalent

* c = * b

c++;

b++;

Study the operator + ()closely on the code at the end of this handout. Implement the Poly class and with the methods such as display(), displayNice(), constructor() and operator+(), and see if they all make sense.

A lot of the operator +() code is tricky because they are trying to keep the terms sparse, and eliminate the zero terms. Remember one polynomial can have terms no lower than the power of 5, and another can have terms in the power of 4,3,2,1, and a constant. In that case the =() operator needs to put the lower terms in the result of the addition.

Note that the operator+() creates an array for the addition, uses the pol pointers from the host and the parameter Poly object (called q in the operator +() code) to create an array of exponents and coefficients. Finally placing a –1 at the end. THEN it constructs a Poly object and returns it

Poly ans(tmp, (c-tmp)/2);

delete tmp;

return ans }

Note that c – tmp is called pointer arithmetic

This works ONLY if both pointer are of the same type AND referring to addresses in the same array!

Example:

	6
	2
	2
	-1
	0
	7
	-1

This corresponds to a polynomial

2x^6 – x^2 + 7

Suppose we have 2 int pointers, tmp and c

	6
	2
	2
	-1
	0
	7
	-1

tmp

c

c – tmp is pointer arithmetic and the result of subtraction of two pointers is a pure number – NOT and address

c – tmp equals the number of elements between the to pointers. In this case it is 6.

So …

Poly ans (tmp, (c – tmp)/2);

constructs a Poly object with the tmp array with the number of terms equal to 3 (remember we need two int locations for each term (exponent/coefficient), but the Poly constructor takes care of that).

If we executed

c++;

c – tmp would be 7

The code:

/////// File: poly.h ///////

class Poly {
public:

Poly() { pol = new int[1]; pol[0] = -1; }

Poly(int *p, int terms); // constructor

Poly operator + (Poly q); // poly addition

Poly operator - (Poly q); // poly subtraction

Poly operator * (Poly q); // poly multiplication

unsigned int deg() { return(pol[0] > 0 ? pol[0] : 0); }

void display(); // display host object

void displayNice(); // display host object in nicer way

/* other members */

private:

int length(); // length of pol

int * pol; };

/////// File: poly.cpp ///////

#include <iostream>
#include "poly.h"

#define MAX(x,y) ((x) > (y) ? (x) : (y))

#define MIN(x,y) ((x) < (y) ? (x) : (y))

using namespace std;

Poly::Poly(int *p, int n) // constructor

{

n = 2*n;

pol = new int[n+1]; // dynamic allocation

for (int i=0 ; i < n ; i++)

 pol[i] = *p++;

pol[n] = -1; // terminator

}

int Poly::length() // private member

{

int i;

for (i=0 ; pol[i] > -1 ; i += 2)

 ; // do nothing

return(i+1); }

Poly Poly::operator +(Poly q) {

int *c, *a, *b, *tmp;

unsigned len, d;

len = length()+q.length()-1;

d = 1 + 2*(1+ MAX(deg(), q.deg()));

len = MIN(len, d); // max length of answer

tmp = c = new(int[len]); // temporary space for result

a = pol; b = q.pol;

while (*a >= 0) // for each term of a

{

while(*b > *a) // terms in b of higher power

{

*c++ = *b++;

*c++ = *b++; }

*c++ = *a;

if (*a == *b) // add terms of like power

{

*c = *++a + *++b;

if (*c++ == 0) c -= 2; // terms cancel

b++;

}

else *c++ = *++a; // no terms to combine

a++;

}

while (*b >= 0) {

*c++ = *b++;

*c++ = *b++; } // add left over terms in b

*c = -1; // terminator marker

Poly ans(tmp, (c-tmp)/2); // answer object

delete tmp; // free temporary space

return(ans); }

void Poly::display() {

int *p = pol;

switch (*p) {

case -1: // zero poly

cout << "0" << endl; break;

case 0: // constant poly

cout << p[1] << endl; break;

default:

cout << '('; // display terms

while (*p >= 0) {

cout << *p << " " << *(p+1);

p += 2;

if (*p != -1) cout << ", ";

}

cout << ")\n";

} // switch

}

#include "poly.h"
#include <iostream>

using namespace std;

int main(int argc, char * argv[]) {

int p1[] = { 3,5,0,4,-1};

int p2[] = { 3,2,1,4,-1};

Poly poly1(p1, 2); // create a two term Poly object p1

Poly poly2(p2, 2);

// we should have a display method to output the Polys

poly1.display(); // 5x^3 + 4

poly2.display(); // 2x^3 + 4x

poly1.displayNice(); // 5x^3 + 4

poly2.displayNice(); // 2x^3 + 4x

Poly poly3; // we need a default constructor too!

cout << "poly3 = ";

poly3.display();

// we should define a + () operator which returns a Poly

poly3 = poly1 + poly2;

poly3.display(); // 7x^3 + 4x + 4

Poly4 = poly3.deivative();

Poly4.display(); // 21x^2 + 4

// we should define a - () operator which returns a Poly

(poly1 + poly2).display(); } // 3x^3 4x + 4

