· Pointers

* Every variable in a program is stored somewhere in memory

* The memory location of that variable is referred to as its address

* Variables are said to be born when they are defined

* When a variable is born (defined) it is immediately associated with an address

These Notes are in C, not C++, BUT only the I/O differs

cout << k is similar to
printf(“%d”, k)

cin >> k is similar to
scanf(“%d””, &k)

·
Example 1

int my_int;
// defining my_int

float my_float;
// defining my_float

char my_char;

Pointer variables are just like any other variables. They have all the same properties

1.
Name

2.
An address

3.
A value

Where they differ is that a pointer variable’s value carries a meaning. The value IS an address

Let us now add three more pointer variables to our definitions That results in the following

int * my_intp;

float * my_floatp;

char * my_charp;

Our memory now looks like shown below

Now, let us make some assignments and observe how ordinary variables and pointer variables behave

my_int = 6;
my_float = 3.4;
my_char = ‘J’;

my_intp = &my_int;

my_floatp = &my_floatp;

my_charp = &my_char;

The ordinary variable has stored a pure value. A pure value is simply a value to which the computer program has attached no meaning. Any value within the bounds of the type of variable is ok with the program

A pointer variable also has a value, but that value is not pure. It is an address, and specifically an address of a particular type of variable. For example, my_intp is holding an address of an int type variable

Since the pointer variable holds the address of another variable, we say that it points to it, and show the relationship in the following way:

When we print variables, we specify to the printf() function the type of the variable as well as its value.

Each variable has a type:

For example, my_int is if type int, my_char is of type char.

It follows then that my_intp is of type int * and my_charp is of type char *
When printing we have to use special care to be sure that the value we pass to the printf() function is what we really want

printf(“my_int = %d, and its address is %d.\n”,my_int, my_intp);

=> my_int = 6, and its address is 1000.

We can achieve the same effect by using the following constant address

printf(“my_int = %d, and its address is %d.\n”,my_int, &my_int);

=> my_int = 6, and its address is 1000.

This is obvious since we assigned &my_int to my_intp earlier

· Dereferencing Pointers

· Using pointers in initializing statementsPRIVATE

int i = 6, int_p = &i;

double d = 3.421, double_p = &d;

· What are the main reasons for using pointers?

1.
To enable changing a value in the function from the calling environment

2.
To speed up parameter passing in function calls

3.
To use standard file I/O

4.
To perform fast binary file I/O

5.
To use strings in "C"

6.
An alternative to using ordinary arrays

7.
To utilize dynamically allocated memory libraries

8.
To access a hidden variable in a nested scope

9.
Passing functions as parameters to other functions

10
What was (9) again???

· Dereferencing Pointers

Since the pointer holds the address of the object it points to, we can always access that object by simply dereferencing the pointer.

If we place an asterisk in front of a pointer, we get the equivalent of whatever it is pointing to (in lvalue, rvalue, and type)

int i = 5, int_p = &i, k;

k = *int_p + 4;

Same as the rvalue of int variable i

Now k has the value of 9

*int_p = 6

Same as the lvalue of int variable i

Now i has been changed to be 6

*int_p = *int_p++

Dangerous, indeterminant assignment, but legal in "C"

int i = 5, int_p = &i, int k = 3;

printf("i = %d\t*int_p = %d\n",i, *int_p);

=> i = 5
*int_p = 5

int_p = &k;

printf("i = %d\t*int_p = %d\n",i, *int_p);

=> i = 5
*int_p = 3

· Star Value
We say that a variable when defined has a star value

int i , j , k;

Variables i, j, and k have a star value of zero (0)

int * ip, * jp, * kp;

Variables ip, jp, and kp have a star value of one (1)

Note that the asterisk does not apply to all variables that follow it

int * ip, jp, kp

Now only ip is a pointer, star value one. Variables jp and kp are plain int, star value of zero

When we dereference a pointer, we knock down its star value by one

When we precede any variable by the &, we increase its star value

Two expressions cannot be compatible if their star values do not match

int k = 7, m = 5, * ip = &k, *jp;

m = *ip + m;
/* ok */

ip = &m;

/* ok */

ip = jp;

/* ok */

ip = &jp;

/* error */

· Using Pointers When Calling Functions
int i = 10, * ip = &i;

void f(int * p) {

printf ("i = %d\n",i);

*p += 1; }

f(ip);

printf ("i = %d\n",i);

=> i = 10

 i = 11

· Pointer Arithmetic
The type of a pointer is very important. While adding one (1) to a numeric variable increases the value by one, adding on to a pointer variable may not do the same

int i=17, j=5, k=4, *ip = &j;

double d=5.1, e=6.11, f=3.22, *dp = &e;

printf ("*ip = %d *(ip+1) = \n",*ip, *(ip+1));

=> *ip = 5 *(ip+1) = 17

printf ("ip = %d ip+1 = %d dp = %d dp+1 = %d\n",ip,ip+1,dp,dp+1);

ip = 1000 ip+1 = 1004 dp = 884 dp+1 = 892

Pointers can be used in arithmetic. When adding some number k to a pointer we actually add

k * (number of bytes in the type to which it points)

This can be useful in both string as well as array operations.
 my_int

 ??????????

 1000

my_float

 ??????????

 1004

 ??????????

 1012

my_double

The contents, or value of the variable

The name of the variable

The address of the variable

 1013

 ??????????

 ??????????

 1017

 1021

 my_intp

my_floatp

my_charp

 ??????????

 ??????????

 1000

 ??????????

 ??????????

 1004

 1012

 my_int

my_float

my_char

 6

 1000

 my_int

 3.4

 1004

my_float

 J

 1012

my_char

 1000

 1013

 1004

 1012

 1017

 1021

 my_intp

my_floatp

my_charp

 my_intp

 my_int

my_floatp

my_charp

my_float

my_char

viii
viii
C programming language – Pointers by Julius Dichter

