CS 390









 

Office: 
Technology Bldg 223





email:
dichter@bridgeport.edu
Required Text:
TBD
This course is an intensive one-semester course designed to accelerate graduate students into programming competency using C++ from beginning to data structure level.  The programming will be using Microsoft VC++ as well as the Solaris UNIX platform. We will cover object-oriented programming concepts, classes, methods  and OO design techniques. Algorithm development and pseudocode will be introduced. We will then focus on a thorough study of data structures  as well as the analysis of algorithmic complexity. We will cover all major data structures, including applications of each. Many important algorithms will be studied and implemented. Complexity and correctness considerations of algorithms will be studied. The language of instruction will be C++. Advanced concepts of programming with C++, including inheritance and pointers, will be covered as part of the class. The language will be C++.  There will be ten programming assignments to implement the above-described concepts.  All assignments must be submitted in order to pass the course. Cheating will not be tolerated, and any student who cheats on any class assignment will fail the class.

In addition to the machine assignments, there will be four tests and a final exam. Each  exam will count 10 percent of the grade, the final exam each will count 30 percent of the grade. The programming assignments will count the remaining 30 percent of the final grade. It is important to do the programming assignments on time, because the exams will test much of the concepts practiced in the programs. All programs are due at the beginning of the class. Late work will lose one letter grade per day. Class participation is encouraged and may only positively affect a student’s grade.

The students are advised that the programs will usually take a considerable period of time. Therefore it is important that students get working on assigned programs as soon as possible. Be aware of the following Computer Science realities: 

1. Programming will always take you more time than you thought.

2. Your compiler will be less dependable toward the end of any assignment.

3. The lab will be full with students and the printer will be out of paper when you need them the most

4. Your professor has heard all possible excuses why programs are not done.

5.
Get your work done early!!


CS 390 - Topics Covered

*
Historical Background of Computers, Overview of Hardware Components, Internal storage Basics (Decimal, Hex, Octal, Binary Conversions), 2's Complement Storage Method. Software Development Cycle, Program Design, Documentation and Modification.  

*
Introduction to the C++ language: VC++ and UNIX compilers environments. 

*
Basic C++ Syntax: Declarations, I/O, Data Types, Operators, Programming conventions, Flow of Control: Repetition: Loops: while, for, do-while, Conditional Logic: if, if-else, switch, conditional operator.

*
OO Design, Modular Programming, Functions and Libraries. 

*
Programmer-Defined Functions, Overloading Names, 

*
Procedural Abstraction, Value and Reference Parameters, Testing and 
Debugging Programs. 

*
Introduction to Objects and Classes with the  iostream class. Manipulators, character I/O and Inheritance. 

*
Object Programming: Defining and implementing C++ classes and structures. Defining member methods and operators, constructors, overloading members. 

*
Arrays: Single and Multiple Dimensions, As Parameters, Array Processing, Pointers and Pointer Arithmetic.  C and C++ strings. 

*
Introduction to Recursion, Searching and Sorting Techniques and some performance considerations (as time allows) 

*
Advanced C++ language topics, pointers, introduction to data structures..

*
Proof of correctness, algorithmic complexity, Big O analysis.  Internal data representation.

*
Stacks and applications: postfix and prefix notation, maze problem.

*
Queues applications: FIFO, DEQUE, Priority Queue ADT. Using queues in simulations.

*
List  complexity and applications: static and dynamic implementations.

*
Linked List: managing data storage manually and dynamic allocation.

*
Recursive Algorithms and Binary and Linear Searching techniques.

*
Sorting algorithms: Bubblesort, Mergesort, Quicksort, Heapsort with complexity analysis.

*
Trees: general trees, binary trees, BST implementations, priority queue tree implementation.

