Program #2
CS 102PRIVATE

J. Dichter
University of Bridgeport

General Instructions:

Write a program, which will evaluate prefix expressions stored in an input file. The processing of the input strings will be accomplished with the stack ADT. Since correctly formed input will not be assumed, the program must be prepared to write the correct evaluation of properly-formed strings as well as appropriate messages when erroneous input is encountered. The program will continue to read and evaluate input strings until it reaches the end of file.

Specific Instructions:

This program will implement the stack as a C++ template. The stack can then be parameterized for any element, such as int or char. In our case, there will be two stacks created – a char stack for operators and an int stack for the operands. You will have two stacks because you will be using two kinds of tokens – operands (numbers) and operators (+, -, *, D, M). Whenever you need to push an operand, you push in into the operand stack. If you need to push an operator you push it into the operator stack, but you also push a special value on the operand stack as a marker.

Stack<char> stackOperator;
Stack<int> stackOperand;
If the prefix expression is + * 8 4 5 then the stacks after the eight (8) has been read will look as follows:

stackOperand =>
X X 8

stackOperator =>
+ *

where X represents a special value (very low or very high) which marks that the element on the stack is an operator, and we should look for it on the operator stack. A way to have constant in a class is as an enum

class Stack {

public:

 enum { MARKER = -32000 }; … } ;

Then you can push the operator ‘+’ and its corresponding marker like this:

stackOperand(Stack:MARKER);

stackOperator(‘+’);

The stack implementation will be pointer based. Access to the stack will be only through the stack methods: a default constructor, push(), pop(), empty(), and top().

The input strings will consist of operands (integers) and the operators (+,-,D,M,*,^), collectively referred to as tokens. Each token must be separated from the preceding token by one or more spaces.

Program #2
CS 102PRIVATE

J. Dichter
University of Bridgeport

You will need to do error checking during this processing. Examples include reading an illegal token from the input string, finding an empty stack when an element is expected, or finding an operand when an operator is expected (or vice versa). If such a condition occurs, you should output a meaningful message.

You should implement an array-based and pointer-based stack implementation. Implementing only one way will result in a maximum of a “B” grade. So after you have the program written, you need to link it to the array stack, and show its output, then link it to the pointer version, and show its output. Be sure to have a clear well documented code with an input file and output file included.
Input:

* + 10 8 2

* * * * * * * * * * 2 2 2 2 2 2 2 2 2 2 2

* M D * + - - - - -

+ + + + * 2 3 - 11 4 - 8 2 4 4

- + M 8 3 * 3 3 + 10 10

+ M 2 16 D D D D 128 2 4 2 2

+ + + + + + + + + + 12 33 444 5 6 7 8 9 1 2 43

+ * - 7 4 D 13 3 - 3 4 2

