Program #3
CS 102PRIVATE

J. Dichter
University of Bridgeport

General Instructions: Write a program which will use queues to simulate toll booth station traffic. Cars arrive at the toll station at an average rate (probability). Each toll transaction will take a certain amount of time, according to a user-entered distribution. As each car arrives it is placed in the queue. If the queue is filled to capacity, a second queue is opened and the queues share the accumulated load. A newly arriving car will always go into the shortest queue, thereby acting as a natural balancing method. Whenever all open queues are filled to capacity, a new queue is opened, and the entire load is redistributed. Once a queue is open it is never closed. The object then is to find a minimum "correct" number of queues which will maintain servicing incoming traffic without overloading any of the queues. Since probability is a factor, we will assume that "one hour" of operation without any queue overload satisfies our objective.

Specific Instructions: The toll station will have a potential of 10 queues, but will only open as few as possible. The dynamic implementation of the queue ADT is recommended. In fact, the toll station itself is an ADT with ten queues and the toll station statistics - arrival rate, duration of service. The program will have a global "clock" which will be initialized to zero and increment by one for each simulated second. For each second, there will be a user-entered probability of an arrival. That is, there is a probability, say 0.20, (between 0 and 1.0) of a car arriving at any one second. So for each clock "tic", a random number will be generated. A value < 0.20 can be interpreted as an arrival, none otherwise. Here is a simple method for generating the service duration: For instance assume 50% cars need < 5 seconds, 70% cars need < 8 seconds, 90% cars need < 10 seconds, and < = 100% cars need 15 seconds (you will interactively enter your own choices). We can then interpret 0.0 <= random number < 0.50 assigns a service time of 5 seconds; 0.70 <= random number < 0.90 assigns a service time of 10 seconds. The program then involves the following:

1) Initialize the clock, the queue, and queue statistics

2)
Repeat i)
Advance the clock

ii)
Continue to service the current car(s)

iii)
Check for new arrival: if arrival then set all parameters and enqueue at any minimum length queue

iv)
Until stability of number of queues holds for an "hour"

Hand in several different runs, each with different statistics. When a run "settles", output the statistics i.e: probability of an arrival, service distribution, the required number of queues, average waiting time, and the amount of time (in "hours and minutes") to settle. If a run does not settle (i.e.: all ten queues fill up completely), stop and print similar output along with "All Queues Full" message. Be sure to perform three or more runs with same statistics.

