Dr. Dichter

 Spring 2003

CS 102

 University of Bridgeport

Office:
Technology Building 223

Office Hours:
M 2:30 - 3:30, T 1:00 – 3:00, W 2:30 – 3:30

Phone:
576 - 4763

email:
dichter@bridgeport.edu
homepage: www.bridgeport.edu/~dichter
Required Text:
Larry Nyhoff, C++: An Introduction to Data Structures,

Addison Wesley, 1999.

The course is an advanced programming course with emphasis on a thorough study of data structures as well as the analysis of algorithmic complexity. It will cover all major data structures, including applications of each. Many important algorithms will be studied and implemented. Complexity and correctness considerations of algorithms will be studied. The language of instruction will be C++, and it is expected that the student is proficient with all basic constructs. Advanced concepts of programming with C++, including inheritance and pointers, will be covered as part of the class.

There will be several machine assignments, midterm and final examinations. All assignments must be handed in at the beginning of the class on the due date to receive full credit. All assignments and exams must be completed to pass the course.

Grade Calculation

Exam I

-
20%

Midterm Examination

-
20%

Exam II

-
20%

Final Examination

-
20%

Programs

-
20%

note:
All programming assignments must be handed in according to the following specifications:

· Modular coding is required, using appropriate OO concepts

· Include accompanying documentation with a clear program statement and explanation of each module with function/method pre and post conditions.

· Programs must include all I/O files and source code hardcopies and a diskette.

Dr. Dichter

 Spring 2003

CS 102

 University of Bridgeport

Topics

*

Overview of Structured Programming and Object Oriented Programming concepts, advanced C++ language topics, introduction to data structures, and ADTs.

*

Proof of correctness, algorithmic complexity, Big O analysis. Internal data representation.

*

Stack ADT and applications: postfix and prefix notation, maze problem.

*

Queue ADT and applications: FIFO, DEQUE, Priority Queue ADT. Using queues in simulations.

*

MIDTERM Examination

*

List ADT complexity and applications: static and dynamic implementations.

*

Linked List ADT: managing data storage manually and dynamic allocation.

*

Recursive Algorithms and Binary and Linear Searching techniques.

*

Sorting algorithms: Bubblesort, Mergesort, Quicksort, Heapsort with complexity analysis.

*

Tree ADT: general trees, binary trees, BST implementations, priority queue tree implementation.

*

FINAL Exam

