CS102 - Program #4 notes

Linked Lists

Linked list is essentially an ordered list of some data in which one can traverse it (examine it) in only one direction. Linked list is made up of nodes that consist of data section that holds the actual data and a link section, which contains information about the next node in the list. Usually, that link section contains a pointer to the next node, or in array implementation of the list an index of the next node.

Usually Linked List ADT has the following functions:

Add – adds an element at the end of the list

Add(position) – adds an element at a certain position

Remove(position) – removes a certain element

Traverse – traverses the list and possibly display its content on the screen.

IsEmpty – function that checks if the list is empty or not

and possibly others such as getSize, etc.

It is important to check the position parameter when Add(position) and Remove(position) functions are called. Suppose the list has 5 elements in total – 0 to 4. It would be legal to call Add or Remove with position parameter in the range of 0 to 4 and also it would be legal to call Add with the position parameter value of 5, which would essentially add a new Node at the very end of the list (after the 4th element).

Linked list can be represented graphically as follows:

FirstNode

Node 0

Node 1

 Node 2

Node 3

Thus in the above linked list of 4 elements Node 0 has a pointer to Node 1, Node 1 to Node 2, Node 2 to Node 3. We also need to keep a pointer to the first node in the list, FirstNode (which is Node 0 in the above example) to be able to access the list at all.

Clearly, next is used to create a link to the next node in the list, hence the name linked list.

Traversing the linked list:

1. Start at the beginning – First Node.

2. Access node’s data section. Print out the data or do some other work per application specification.

3. Access the next node by using the link provided in the next section of the current node. Repeat step 2.

4. Do steps 2 and 3 as long as the last node is reached. Last node will point to nothing in its next section. Nothing is represented variously depending on the actual implementation.

Remove a node from the linked list:

1. Check that the node really exists. For example, check that the position passed as the function parameter is the valid position.

2. Start from the beginning of the list, using FirstNode until a node before node that has to be removed has been reached. Call it BeforeNode.

3. Make the next section of the BeforeNode point where the next section of the node that has to be removed pointed to.

 FirstNode

 BeforeNode CurrentNode

 that has to be removed

Similarly to the Remove method, an Add method can be implemented, where you will have to access the node before the one specified by the position parameter to be able to insert one in between them. Then, you will have to change the links in the next section accordingly.

As you may have already noticed, we can access the nodes in a list in only one direction, which in lists that are very large can be very time consuming. That was the reason doubly-linked lists were created that have a link in both directions, which is a separate topic and will not be discussed in this Program #4 notes, since it is not required for the Program #4.

Linked List Implementations

Array Implementation

Linked list can be implemented by using an array. Array indices are used in the next section of the linked list node to construct a link to the next node (index). –1 is used to note that the next pointer does not point to anything. Furthermore, we are indirectly managing two separate linked lists. One that actually contains the data and the one that contains free space, which can be occupied by a node in the future. Thus, we need to have two FirstNode pointers. One for the linked list with data - call it firstNode, and the one pointing to the first free position – call it firstFree.

Note: The term “pointer” in this implementation is not actually a C or C++ pointer. It is simply an integer (int) that contains some value. It is referred as pointer because that is its purpose – to provide the direction for the next node.

For example:

	Array Index
	Data
	Next Index Pointer

	0
	A
	1

	1
	B
	3

	2
	
	5

	3
	C
	4

	4
	D
	-1

	5
	
	-1

In the above example firstNode has a value of 0, since node at the position 0 in the array is the starting node) and firstFree has a value of 2, since first free position in the array is at the index 2.

By examining the above array we can conclude that the linked list is:

A->B->C->D (or: Index0 -> Index1->Index3->Index4)

And “free positions” linked list is: Index2->Index5

As a programmer you can implement the linked list by using arrays in two different manners. You can have two arrays that are cross-indexed. Thus data section can belong to one array and Next Index Pointer to the other array. They are linked together by using the same index for accessing both arrays for a single node instance.

Another way of implementing it is to use a single array that contains a simple class or struct type, which contains data and a next pointer section.

Appending the node at the end of the list:

	Array Index
	Data
	Next Index Pointer

	0
	A
	1

	1
	B
	3

	2
	X
	-1

	3
	C
	4

	4
	D
	2

	5
	
	-1

As you can notice, node that contains data X was appended to the end of the list. Previously node at position 4 (that contains D) was the end of the list. New node was inserted at the first available array position whose index value was stored in the firstFree variable. Previous end of the list, node 4 now points to the newly inserted node at position 2. And the new node points to nothing, since it is at the end of the list. firstFree variable now contains the value 5, as the next available slot.

Deleting node at position 3:

	Array Index
	Data
	Next Index Pointer

	0
	A
	1

	1
	B
	4

	2
	X
	-1

	3
	
	5

	4
	D
	2

	5
	
	-1

As you can notice by looking at the original table, node at position 3 was originally between nodes 2 and 4. Thus, in order to remove it, a link between 2 and 4 needs to be created and position 3 should be marked as the empty space. Furthermore, position then needs to point to the next available free space, position 5, and firstFree variable needs to be updated to hold the value

Note: Initially, when the list is constructed for the first time using a fixed-size array, it will be empty. Thus, firstFree will contain 0 as its value. firstNode will have –1 as its value (which means that the list is empty). Next Index Pointer will contain current Index + 1 value all the way to the end of the array. The last element of the array will have –1 as its Next Index Pointer (end of the “free positions” list).

Pointer-based implementation

Pointer based implementation of a linked list is more closely related to the concept of the linked list described in text and graphics at the beginning of this document. Furthermore, it does not have any size limit to it, since new nodes can constantly be added to it (actually, the limit is the size of the computer’s memory).

Basically, in the pointer based implementation one would have a Node class that has an actual C/C++ pointer to a Node class, which is essentially a part of the next section of a linked list node, and the actual data section.

// Template Class code

// Written by Julius Dichter

// © 2003

#include <iostream>

using namespace std;

template <class T>

class Node {

public:

Node(T, Node<T> * = NULL);

T getData() { return data; }

Node<T> * getNext() { return next; }

void static display(Node<T> *);

private:

T data;

Node<T> * next;

} ;

Note: The above code was excerpted from Simple Template Class Example - Handout

 that can be found at Dr. Dichter’s CS102 web page.

By using the above Node class, one can easily construct a linked list and traverse it by using the next pointer - next pointer is used to construct the actual links between nodes.

In your program, you will also have to have a firstNode pointer that will always point to the first node in the list, or to NULL if the list is empty (a case when the linked list object is first instantiated).

Important:

In Program #4, linked list will be a template class. That means it can hold any type of data; for example char, int, double, Fraction (developed in CS101), etc. You need to decide what data will it contain in the driver program when you instantiate the linked list object. You can use rational numbers for example to test that the program works and to obtain the output required for assignment submittal.

 next

 data

 next

 data

 next

 data

 next

 data

 next

 data

 next

 data

 next

 data

 next

 data

