
26 October 2006/Vol. 49, No. 10 COMMUNICATIONS OF THE ACM

COMMUNICATIONS OF THE ACM October 2006/Vol. 49, No. 10 27

lobalization and turbulent business environments are two
factors that create significant challenges for software orga-
nizations today. In the wake of the IT downturn, many
organizations have turned toward globally distributed
software development (GSD) in their quest for the silver
bullet of high-quality software delivered cheaply and
quickly. At the same time, the increasingly volatile
requirements in the business environment and the gen-
eral trend toward leanness have led to a focus on more

flexible, agile approaches as a potential solution.
Despite 50 years of software development experience, the perception of the

so-called “software crisis” persists in many quarters, with continued instances of
software projects exceeding budgets, and development schedules, and exhibiting
poor levels of quality when completed—if completed at all. In recent years, agile
methods have been proposed as a new, practice-led, paradigm that potentially
addresses these problems by promoting communication, flexibility, innova-
tion, and teamwork. Such methods differ significantly from the traditional
plan-based approaches emphasizing development productivity rather than

FLEXIBLE AND DISTRIBUTED
SOFTWARE PROCESSES:
OLD PETUNIAS IN
NEW BOWLS?

Il lustration by Paul Zwolak

G

By PÄR J. ÅGERFALK and BRIAN FITZGERALD, Guest Editors

28 October 2006/Vol. 49, No. 10 COMMUNICATIONS OF THE ACM

process rigor. Thus, they seek to accomplish only those
development tasks that deliver business value quickly,
while accommodating changing user requirements.

Practice is ahead of research in this area, and the
use of agile approaches appears to be growing rapidly,
but the fundamental underpinnings of agile methods
need to be better conceptualized and theorized. How-
ever, agile methods are not the only result of the quest
for flexible software processes. A similar aim can be
found in the process tailoring and method engineer-
ing literature [3, 4, 7, 8]. Here, the focus is on adapt-
ing development processes to changing
circumstances, albeit usually in the
context of rigorous plan-based
methods. Ironically, the suggestion
by agile method advocates that
agile methods must be applied in
their entirety, as the benefits only
arise through the synergistic combi-
nation of individual practices, is
somewhat at odds with the spirit of
flexibility, and not borne out in
recent research that suggests agile
methods should be flexibly tailored
to the particular development con-
text to achieve maximum effect [6].

Against this background, the
software development environ-
ment is changing. The general
trend toward globalization has
particular implications for soft-
ware development [2]. There are
many potential benefits from
GSD, including reduced development costs; reduced
cycle time from follow-the-sun software development
across multiple time zones; cross-site modularization
of development work; access to a larger and better
skilled developer pool; innovation and shared best
practices; and closer proximity to customers.

However, as illustrated in the accompanying table,
GSD also surfaces significant challenges in relation to
communication, coordination, and control issues.
While geographical distance by itself may induce a
number of problems, increased geographical distance
also often increases temporal distance and sociocul-
tural distance. When people are not co-located they
often must rely on asynchronous communication
channels, such as email, and when working in differ-
ent time zones, they cannot always expect to find the
right person at the right time—an example of the
emergence of a temporal distance. Similarly, when
people from different countries and with different
backgrounds collaborate, their frames of references,
work habits, and language may differ, which can

often lead to great frustration—an example of socio-
cultural distance. Interestingly, most GSD research
seems to take the assumed benefits more or less for
granted and focuses primarily on the problems associ-
ated with GSD. Our own ongoing research, on the
other hand, indicates that many of the proclaimed
benefits are simply not realized.

Although there is a steadily increasing body of lit-
erature on each of these two phenomena—process
flexibility and agile methods on the one hand and
GSD on the other—their combination is poorly
understood, although expected to be beneficial. Inter-

estingly, agile methods and GSD appear to be largely
incommensurable. Due to physical separation of
development teams in GSD, many of the key con-
cepts within agile development, such as pair-pro-
gramming, face-to-face interaction, and onsite
customers, are difficult to apply. Also, given the risks
inherent in GSD, the natural tendency is probably to
favor plan-based approaches.

Given the complex nature of these topics, we
solicited short commentaries from a number of
domain experts to set the scene for this special section
through a virtual panel debate. We begin with David
Parnas, our distinguished colleague at the University
of Limerick, who is more qualified than most to assess
the relative merits of the issues at stake. He suggests,
with healthy skepticism, that while agile methods
may correctly diagnose the problems, they are not the
right solution. He contends the problems associated
with GSD are not significantly new and different
from traditional software development problems. His
message is that the root of the problem is poor docu-
mentation and poor understanding of the role of doc-
umentation. Agile methods that try to avoid
documentation as far as possible is not the right way
to go, he says.

Intro table (10/06)

Sociocultural Distance

C
om

m
un

ic
at

io
n

C
oo

rd
in

at
io

n
C

on
tr

ol

+ Innovation and sharing
 best practice
- Cultural
 misunderstandings

+ Greater learning and
 richer skill set
- Inconsistent work practices
 can impinge on effective
 coordination
- Reduced cooperation
 arising from misunderstanding

+ Proactiveness inherent
 in certain cultures
- Different perceptions of
 authority can undermine
 morale
- Managers must adapt to
 local regulations

Geographical Distance

+ Closer proximity to
 market
+ Access to remote skilled
 work forces
- Face-to-face meetings
 difficult

+ More flexible coordination
 planning
- Reduced informal contact
 can lead to lack of critical
 task awareness

+ Communication channels
 can leave an audit trail
- Difficult to convey vision
 and strategy
- Perceived threat from
 training low-cost “rivals”

Temporal Distance

+ Improved record of
 communications
- Reduced opportunities for
 synchronous communication

+ Coordination needs can
 be minimized
- Typically increased
 coordination costs

+ Time zone effectiveness
 can be utilized for gaining
 efficient 24x7 working
- Management of project
 artifacts may be subject
 to delays

Issues in GSD with
examples of potential
opportunities (+) and

threats (-) [1].

DAVID PARNAS

AGILE METHODS AND GSD:
THE WRONG SOLUTION TO AN
OLD BUT REAL PROBLEM
I have been hearing the term “software crisis” for
more than 40 years. Clearly, it is not a crisis; it is a
chronic problem. Each time someone uses the term
“crisis,” it is a preface to the announcement of a new
miracle cure for the problem. Examinations of the
cure usually reveal new words for ideas that have
been tried before without much effect. This decade’s
crisis is global software development (GSD); this
decade’s miracle cure (for all the ills of the industry)
seems to be a collection of methods known as
“agile.”

I do not believe the problems associated with
GSD are new problems and I do not believe agile
methods are the right solution. The symptoms of the
problems are as old as the industry. They include:

• Software is rarely delivered on time, schedules
slip repeatedly.

• The ultimate slip—cancellation, with nothing
to show for the effort.

• Software so poor that system cannot be used.
• System solves the wrong problem (requirements

not met).
• System out of date before it is in use (require-

ments change).
• “Too many frills, not enough lifting power.”
• Staff burn-out (software not maintainable by

new staff).
• Seemingly small changes cause huge effort.
These problems were experienced when software

was developed by co-located programmers; they are
now experienced when the programmers are far
apart. When one looks behind these symptoms, one
finds they are caused by communication problems:

• There is poor communication between users
and developers.

• There is poor communication between architect
and programmers.

• There is poor communication among the pro-
grammers.

When this was first observed (as early as the
1960s), it was recognized that documentation was a
key problem. As a development manager told me in
1969, “We do not know how to write specifications
for components, or to write requirements specifica-
tions—that’s why we have these problems.” That
manager, and many others, asked researchers to fig-
ure out how to write better specifications and other
kinds of documentation.

Computer scientists did respond by doing what

we all do best—the things we have long been doing.
Philosophers and logicians wrote specifications that
looked just like axiom systems. Algebraists wrote
specifications that defined algebras and argued about
what type of algebra was needed. Developers, who
were looking for real solutions, looked and then
turned away. This led to two schools of thought
among developers: the first developed process stan-
dards requiring huge amounts of wordy documenta-
tion; the second said, “Code is a document and all
the documentation we need.”

The pendulum began to swing between the two
extremes. The huge wordy standards produced doc-
umentation that was vague, poorly organized, and
difficult to use. Those who tried to skip to the code,
continued to produce code that was poorly orga-
nized and needed constant refactoring. Their maxim
was that it is code we must produce so let’s always
produce code. Documents and meetings do not pro-
duce code. Unlike code, a document is not testable,
so why bother? To avoid the poor communication
about requirements, they advocated keeping the cus-
tomer involved in code development. Essentially,
they wanted to keep coders in contact with cus-
tomers and bypass non-productive architects or oth-
ers that write documents.

What could be wrong with this no nonsense
approach? All the things that were wrong when no
documentation was written!

GSD has exacerbated the communication prob-
lems. If it is difficult to communicate with the per-
son at the next desk, it is more difficult to
communicate with someone half a world away.
However, this is not really new. I remember software
developed more than 30 years ago by two groups,
one in Washington D.C. and the other in San
Diego. Today, it is a lot easier to communicate data
with Sydney than it was to communicate between
the two coasts of the U.S in 1975. We knew then,
and should still know, that you cannot communicate
orally the detailed information needed to produce
good software. The solution is neither to add more
documentation nor to abandon documentation—it
is to get better documentation. Just as the huge and
burdensome documentation standards were not a
solution, neither is returning to the days of no doc-
umentation.

It is fashionable today to speak of “grand chal-
lenges.” The real grand challenge is not to find ways
to avoid documenting, but to find ways to produce
useful documents—documents that take time but
save more time. We will find that real agility comes
from good design that is well documented in precise,
lean documentation.

COMMUNICATIONS OF THE ACM October 2006/Vol. 49, No. 10 29

Parnas’s piece certainly brings to mind the image of
petunias in Douglas Adams’s The Hitchhiker’s Guide
to the Galaxy: “Curiously enough, the only thing that
went through the mind of the bowl of petunias as it
fell was ‘Oh no, not again.’” To open up the debate,
we asked another founding father of software engi-
neering, Barry Boehm, to respond to Parnas’s com-
ments. From his remarks, we gather it is, in fact, not

a question of to document or not to document.
Rather, it is a question of not falling into the trap of
believing there is such a thing as a one-size-fits-all
method. Obviously, this then brings us back to the
question of tailoring. It appears agile methods per se
may not be the answer to the required development
process flexibility. It is how these methods are tailored
and enacted that is central.

30 October 2006/Vol. 49, No. 10 COMMUNICATIONS OF THE ACM

BARRY BOEHM

ONE-SIZE-FITS-ALL METHODS: THE
WRONG SOLUTION TO NEW PROBLEMS
David Parnas is right when he says that distributed
development is not new. What is new is the radical
speedup of global communications and computing.
This enables distributed software teams to capitalize
on labor cost differentials, multiple time zones, and
local knowledge to adapt to rapid changes in the
marketplace, in the competition, in IT infrastruc-
ture, and in technology more quickly and cost-effec-
tively than their competitors. Some good references
documenting these trends are Thomas Friedman’s
The World Is Flat and the recent ACM Task Force
Report on Globalization and Offshoring of Software.

In producing software cost estimates with our
COCOMO II cost model, we are seeing significant
changes in its Requirements Volatility cost driver
ratings, especially for applications needing to adapt
to rapid competitive change. Requirements Volatil-
ity ratings for stable embedded devices are still in the
0.1% to 0.3% per-month range, but the counterpart
ratings for rapidly changing competition-driven
applications are often in the 10% to 30% per-month
range.

As a good example of thorough documentation of
a relatively stable, medium-size application, Parnas’s
methods were used to produce a 523-page docu-
ment providing the software requirements for the A-
7E aircraft’s operational flight program. With a
requirements volatility of 0.1% to 0.3% per month,
this would require only 0.5–1.5 pages per month to
be changed, to first order. However, a similarly sized
application performing the A-7E’s electronic warfare
function or its commercial equivalent during a
period of rapid countermeasure/counter-counter-
measure interaction could easily have a change rate
of 10% to 30% per month, requiring the developers
to renegotiate and rewrite on the order of 50–150
pages of documentation per month. Such a situation
would leave the project spending more time in
rewriting documents than in changing the software

to stay ahead of the competition.
Fortunately, Parnas provided us with a great

method for handling a lot of this change. His 1979
paper, “Designing Software for Ease of Extension
and Contraction” still contains the best strategy
available for anticipating and reducing the cost of
change. This is to identify the major sources for
requirements change and to encapsulate them as
information-hiding module secrets. Then when an
anticipated change comes, you only need to change
one module to adapt your application.

Unfortunately, though, not every change is fore-
seeable, particularly in competitive or unprece-
dented situations. It is in these situations that the
agile methods people have come up with good
strategies: to engage a committed customer repre-
sentative as part of the development team, and to
invest in team-building activities such as planning
games, daily stand-up meetings, pair programming,
collective code ownership, and continuous integra-
tion that create shared tacit interpersonal knowledge
rather than explicit documented knowledge. Then
when an unanticipated change comes, your team
members can rely on their shared tacit knowledge
and team cohesion to rapidly adapt the application
to accommodate the change. In many situations,
this approach works better than Parnas’s one-size-
fits-all “always document” approach.

Again, unfortunately, many agile advocates treat
their solution approach as a one-size-fits-all solution
as well, with such slogans as “avoid Big Design Up
Front (BDUF), because you aren’t going to need it
(YAGNI).” Even agile leader Kent Beck acknowl-
edges that relying on pure tacit, undocumented
knowledge on large projects is not workable. On the
other hand, even on large projects, there are likely to
be portions of the application with requirements
volatility rates sufficiently high to make operating
on tacit knowledge preferable to spending a lot of
time updating documentation. For such projects,
some kind of hybrid agile and document-driven
approach appears best. How can you organize such a
hybrid approach?

There are no one-size-fits-all solutions. The best
way I have been able to find is to use risk as a way
to determine where to go agile and where to go
document-driven. Thus, for example, if you are
developing a graphic user interface (GUI) for an
unprecedented decision support system and want
to document its requirements, the most frequent
answer you will get from users is, “I can’t tell you in
advance, but I’ll know it when I see it (IKIWISI).”

In such a case, it is a high risk to try to document
the GUI in advance, and with a GUI builder tool,
it is a low risk not to document it.

On the other hand, when you are outsourcing a
relatively stable piece of business logic to a contrac-

tor 10 time zones away, it is a high risk not to invest
in a significant amount of thorough documenta-
tion of the interfaces and protocols connecting the
outsourced software to the rest of your software.
And it will be important to encapsulate any agile
portions of the software within information-hiding
modules, following Parnas’s guidelines.

Thus, in many competitive 21st century applica-
tions, it will be important to avoid one-size-fits-all
solutions, and to use risk considerations to deter-
mine which parts of an application are best handled
by explicit documented knowledge, and which
parts are best handled by tacit interpersonal knowl-
edge.

COMMUNICATIONS OF THE ACM October 2006/Vol. 49, No. 10 31

We also asked an academic with a specific inter-
est in the area of agile methods, Giancarlo Succi
(author of Extreme Programming Examined) to
respond. Here, he invokes what he terms the Kant-
ian categorical imperative of doing good and avoid-
ing evil to characterize the debate. This is

essentially the problem of means-ends inversion,
whereby the endeavor to do good things, such as
documentation, is always blindly followed to the
expense of those real value-added development
activities suited to the needs of the particular con-
text.

GIANCARLO SUCCI

AGILE METHODS: BETWEEN CATEGORICAL
IMPERATIVES AND LEAN PRODUCTION
Parnas uses the term “chronic” to refer to the prob-
lems of software development—and as one of the
founders of software engineering, he is a trustwor-
thy source. He correctly identifies communication
among key stakeholders—developers, managers,
customers, and users—as one of the greatest prob-
lems in software development. Moreover, he is also
completely correct in claiming that not writing any
documentation when developing software in a geo-
graphically and temporally distributed fashion
exacerbates the problem. Ultimately, he acknowl-
edges that the grand challenge for today’s software
engineers is to write useful documentation.

And here we are. We know that building any sys-
tem, including software systems, involves several
phases—analyzing what we want to do, planning
and designing it, constructing it, and so on. It also
involves documenting such phases so that others
will be able to maintain the system over its lifetime
of perhaps up to 20 years.

The fact is that when people have (correctly)
realized it is better to structure and to document the
process of building software systems, they have
often taken a very dogmatic approach to these two
tasks. It is as if they are driven by the fear of not
having enough structure and documentation.

Kant, the famous German philosopher, claims
that all ethics are guided by a categorical impera-
tive: “Do good, avoid the bad!” Such a Kantian cat-
egorical imperative seems to have been applied to
software engineering: “Do good structures and
documentations, avoid the bad!” as the focus has
been for decades on developing structure and doc-
umentation, while the true reasons for which they
have been developed has slowly been forgotten,
transforming them from means to ends.

Altogether, methodologies and formalisms have
been built to have ever stronger structure and ever
more accurate documentation—but the meanings
of “stronger” and “more accurate” have not been
properly defined, nor has enough emphasis been
placed on the fact that different application domains
have different needs. It is as if building control soft-
ware for a nuclear power plant is the same as devel-
oping a system to book tennis courts. We have
lacked understanding of time and effort dimensions
when structuring and documenting, as if “better”
always meant “harder” and “more complex” to do
and understand, regardless of the associated time,
effort, and cost.

And here we encounter the lean revolution. The
lean revolution is not new—it dates from manufac-
turing in the early 1950s. The lean approach does
not advocate ignoring any structure and documen-
tation. Rather, it aims at something totally different:
the separation of the activities that bring value to

32 October 2006/Vol. 49, No. 10 COMMUNICATIONS OF THE ACM

the user from those that do not, and the consequent
elimination of such useless activities called “muda”
(garbage in Japanese).

In software we know the live system gives value
to the user, as does the source code, and the former
is automatically derived from the latter. We cannot
do without them. Everything else is questionable.
This is the lean revolution. Questionable does not
mean useless. Rather, it means “subject to research”
and this is what we do!

No one thinks that documentation is useless. But
consider a system developed by a team of smart pro-
grammers in Smalltalk to run the payroll of a small
company. Would it be better for such a team to doc-
ument a sound selection of variables, methods, and
class names, or a lot of comments and associated
reports. Which approach is more understandable
for users, more likely to be written (and read!), less
likely not to contain mistakes, more robust to code
evolution, more cost effective?

No one thinks that analysis and design are useless.

But consider a system to dispatch tracing messages
and other information to a group of trucks. This
domain is likely to be alien to most software devel-
opers. In such a case, would it be better to first spend
a lot of time analyzing the system requirements,
then a lot of time doing the upfront design, and
eventually writing the code, or to work incremen-
tally, involving the end customer, interleaving some
analysis, design, and even coding, so that developers
grow their knowledge of the system domain? Would
it be better to use sound, comprehensive, formal lan-
guages for analysis, design, and code, or to use a sin-
gle, unique language for analysis, design, and
code—the language used to write the final system,
the ultimate desire of the customer?

While I have not seen a better ethical approach
than the Kantian categorical imperative, such an
approach should not be blindly applied to software
development. Lean production, and its correlate in
software engineering agile methods, reminds us of
this.

To shed some light on the tailoring issue raised by
both Boehm and Succi, we asked one of the leading
practitioners in agile GSD to comment. Matthew
Simons, Managing Director of ThoughtWorks India
and a prolific writer on the topic, confirms that agile

methods must indeed be tailored for GSD. As he
describes here, their tailored story cards clearly illus-
trate the need for appropriate documentation, while
still experiencing the benefits of agile development—
even in a GSD context.

MATTHEW SIMONS

GLOBAL SOFTWARE DEVELOPMENT: A HARD
PROBLEM REQUIRING A HOST OF SOLUTIONS
Globally Distributed Software Development (GSD)
is one of the megatrends shaping our industry. It pre-
sents a special challenge not because it introduces
new ways for software projects to fail, but because it
drastically complicates communication. As David
Parnas rightly points out, the root cause of most soft-
ware failures is ineffective communication. So it fol-
lows that as communication becomes more difficult
the risk of project failure escalates.

Parnas comes out against agile methods, which he
feels are being promoted as a silver bullet to address the
challenges of GSD. He focuses specifically on the
avoidance of documentation that some practitioners
of some agile methods espouse and proposes that this
will never suffice in a distributed context. He closes
with the argument that there is value to be gained
from investments in producing better documentation.

My experiences working with globally distributed

teams over the past five years lend some support to
Parnas’s advocacy for effective documentation. We
have found that in the distributed context, pure agile
development with little or no documentation beyond
code is impractical and inefficient. However, we have
also found the full set of agile practices, which encom-
pass much more than just an approach toward docu-
mentation, address the challenges of communication
in distributed teams better than anything else we’ve
come across.

For context, I work in India with teams distributed
mainly between India and the U.S. or U.K. Most of
our teams follow an approach close to Extreme Pro-
gramming, where the standard artifact is the story
card. The idea is that a few brief sentences written on
an index card can serve as a placeholder for a discus-
sion that will later take place between a developer and
a customer. That conversation is where all the detail
required to develop the feature will come out, without
the overhead of documenting everything more for-
mally.

While the idea of story cards appeals to those with

no desire for reading or writing technical documenta-
tion, the reality of the situation is that such scanty
artifacts are rarely sufficient for development of any-
thing beyond simple systems for highly accessible
individuals or small groups of users. This scenario
rarely applies to GSD. As the picture becomes more
complex we have found the story card-only approach
quickly becomes inadequate.

Rather than abandon lightweight documentation
entirely, we supplement our story cards with concise
documents that capture additional useful details. Typ-
ically this includes a crisp textual description of the
feature, context on the business driver, a screen shot (if
appropriate), a list of likely impacts on other parts of
the system and, most importantly, a set of functional
test cases. These tests clearly define what automated
tests must be written and shown to pass before the fea-
ture is considered complete.

The best examples of these supplementary docu-
ments are no more than about two pages long. Any-
thing longer and you risk investing so much effort in
system documentation that it starts to become a hin-
drance. If you find people on your team who are
spending hours getting every detail in their docu-
ments just right or updating reams of documentation
instead of testing the system and clarifying developer
queries, you have probably passed beyond the limits

of lightweight documentation. Two pages are about
the upper limit beyond which the majority of devel-
opers are likely to get bogged down and start ignoring
the documents (sad, but true).

Breaking your system down into small pieces and
describing those pieces precisely is an advanced skill
that takes time to master and deliver. I like to think
that if Parnas had a chance to review the documents
we are using to support our agile process he might
consider them to be good examples of what he is look-
ing for.

While writing effective documents is a good place
to start, we have found it takes a lot more than that
to deliver complex systems with distributed teams.
Without the discipline that comes from the remain-
ing agile practices (such as Test-Driven Develop-
ment, Continuous Integration, Pair Programming,
among others) good documents are nothing more
than a step on the long and perilous path toward suc-
cessful delivery.

Disregarding agile methods as an effective response
to the challenges of GSD on the basis of their stance
toward documentation alone doesn’t do them justice.
Doing so could prevent you from gaining access to the
significant benefits in risk reduction and quality that
properly implemented agile methods have to offer to
distributed development.

COMMUNICATIONS OF THE ACM October 2006/Vol. 49, No. 10 33

Unfortunately, and to the undoubted chagrin of
all, we did not have the time and space to let these vir-
tual panelists respond further to each other’s remarks.
We expect this brief debate will stimulate some
thoughts, and hopefully there will be a forum for con-
tinued discussion elsewhere.

In addition to these distinguished virtual panelists’
reflections on agility, flexibility, and globalization, we
also solicited two types of research submissions: fea-
ture articles and commentaries. Having received more
than 60 submissions, we are pleased to present the five
pieces selected for publication after a comprehensive
peer-review process.

Gwanhoo Lee, William DeLone, and Alberto
Espinosa explore the tension between flexibility and
rigor and suggests that successful GSD requires both
agility/flexibility and rigor/discipline. They then
derive a set of ambidextrous coping strategies to be
used in GSD projects for achieving the required bal-
ance between the two extremes.

Balasubramaniam Ramesh, Lan Cao, Kannan
Mohan, and Peng Xu focus on how distributed soft-
ware development can be agile. The challenges to
agile GSD they identify—communication, control,
and trust—echo Parnas’ message about the impor-

tance of documentation. However, the strategy they
suggest is more in line with the agile method senti-
ment and aims to create formal arenas for informal
communication and knowledge sharing.

One-Ki (Daniel) Lee, Probir Banerjee, Kai Lim,
Kuldeep Kumar, Jos van Hillegersberg, and Kwok Kee
Wei consider how agility can be achieved in GSD
projects by the proper alignment of IT strategy, IT
infrastructure, and IT project management. The
framework they present points out many important
issues beyond those typically addressed by software
process models and agile methods.

Clearly, achieving agility and flexibility in GSD is
not only about software process management but also
about business strategy and IT infrastructure: global
business objectives are what should drive GSD, not
specific development techniques or software engineer-
ing fads.

All three articles are based on solid case-based
empirical research and as such reflect contemporary
GSD practice quite well. Interestingly, they arrive at
somewhat contradictory conclusions, for example,
regarding the viability of achieving follow-the-sun
software development. While Lee et al. found that
minimization of task dependencies facilitated the

implementation of follow-the-sun development,
Ramesh et al. found this model to be far from reality
in most cases. Although this latter conclusion accords
with our own experience in the area, the inconclu-
siveness seems to indicate a need for further in-depth
studies to understand this complex issue better in line
with Carmel’s study of Infosys [5].

In their commentary, Patrick Wagstrom and James
Herbsleb present an application that can be used to
elicit source code dependencies, and based on those
predict future communication needs between devel-
opers. As highlighted by our virtual panel debate and
the three articles here, communication is indeed a key
concern in software development, and is emphasized
more than ever in the context of GSD and agile meth-
ods. The kind of tool presented is thus likely to play
an increasingly important role in planning and man-
aging GSD projects.

Nick Flor, author of the first academic paper on
qualitative benefits of pair programming, explores the
future of pair programming in the GSD context—
remote pair programming. His commentary con-
cludes by noting the seven properties that make
traditional pair programming successful can also be
achieved remotely with a proper cross-workspace
information infrastructure.

The articles and commentaries in this special sec-
tion provide a snapshot of an increasingly important
area both theoretically and practically. Our virtual
panel debate indicates we are dealing with what are
largely subjective views and what works in one con-
text may not work in another. In a sense this rein-
forces the whole idea of this special section: Flexibility
and the ability to adapt to different circumstances are
necessary for successful software development—be it
globally distributed or not. The articles then go on to
present a number of useful insights for how to achieve
the required flexibility in GSD particularly.

Returning to Douglas Adams’s petunias, who hav-
ing experiencing a few moments of existence, quickly
concluded that it was all just a repetition of previous

experience. Whether or not flexible and distributed
software processes offer an improved future for soft-
ware development or simply represent old petunias in
new bowls is yet to be seen. However, the associated
challenges addressed in this special section are real
and increasingly important. We hope you enjoy read-
ing this section as much as we enjoyed putting it
together.

REFERENCES
1. Ågerfalk, P.J., Fitzgerald, B., Holmström, H., Lings, B., Lundell, B., and

Ó Conchúir, E. A framework for considering opportunities and threats
in distributed software development. In Proceedings of the International
Workshop on Distributed Software Development (Paris, Aug. 29, 2005).
Austrian Computer Society, 47–61.

2. Aspray, W., Mayadas, F., and Vardi, M.Y., Eds. Globalization and Off-
shoring of Software: A Report of the ACM Job Migration Task Force. ACM,
2006; www.acm.org/globalizationreport.

3. Basili, V.R. and Rombach, H.D. Tailoring the software process to pro-
ject goals and environments. In Proceedings of the 9th International Con-
ference on Software Engineering. (Los Alamitos, CA, 1987). IEEE
Computer Society Press, 345–357.

4. Cameron, J. Configurable development processes. Commun. ACM 45, 4
(Apr. 2002), 72–77.

5. Carmel. E. Building your information systems from the other side of the
world: How Infosys manages time zone differences. MIS Q Executive 5,
1 (Mar. 2006), 43–53.

6. Fitzgerald, B., Hartnett, G., and Conboy, K. Customising agile methods
to software practices at Intel Shannon. European Journal of Information
Systems 15, 2 (2006), 197–210.

7. Fitzgerald, B., Russo, N.L., and O’Kane, T. Software development
method tailoring at Motorola. Commun. ACM 46, 4 (Apr. 2003),
65–70.

8. Kumar, K. and Welke, R.J. Methodology engineering: A proposal for
situation specific methodology construction. Challenges and Strategies for
Research in Systems Development. W.W. Cotterman and J.A. Senn, Eds.
John Wiley, Washington, DC, 1992, 257–269.

Pär J. Ågerfalk (par.agerfalk@ul.ie) is an assistant professor at
Örebro Univesity and a researcher at Lero—The Irish Software
Engineering Research Centre, University of Limerick.
Brian Fitzgerald (bf@ul.ie) is the Frederick A. Krehbiel II Chair
in Innovation in Global Business and Technology at Lero—The Irish
Software Engineering Research Centre, University of Limerick.

© 2006 ACM 0001-0782/06/1000 $5.00

c

34 October 2006/Vol. 49, No. 10 COMMUNICATIONS OF THE ACM

FLEXIBILITY AND THE ABILITY TO ADAPT
TO DIFFERENT CIRCUMSTANCES ARE NECESSARY

FOR SUCCESSFUL SOFTWARE DEVELOPMENT—BE IT
GLOBALLY DISTRIBUTED OR NOT.

