Introduction

to

Object Oriented Concepts
Traditional Programming

· Traditional Programming uses a Procedural approach

· The connection of Data and Procedures is used to create programs

· Virtually any Data can be sent to any Procedure. The programmer was responsible for appropriate connection

[image: image1.wmf][image: image2.wmf]
[image: image3.bmp]

Traditional Programming

· Errors could occur when the programmer sends Data to an inappropriate but syntactically correct Procedure.

· Data is at the mercy of the Procedure operating on it. There is little protection for Data once a procedure operates on it.

· New Procedures could be written allowing virtually any number of Procedures to act on a Data. This reduces controlled accessibility, i.e., protection of the Data.

[image: image4.bmp][image: image5.bmp][image: image6.bmp]
Traditional Programming

· The design focus is on action. The traditional methodology is to create a Hierarchical Chart, a.k.a. Top-Down Design Chart

· All Rectangles represent modules and sub-modules of a procedural design. Data is a secondary consideration.

Typical Top-Down Chart

Object Oriented Programming

· An Object Oriented System (OOS) is designed with modules which represent Objects, not Procedures.

· An OOS is designed as a collection of appropriate domain elements, the system objects.

· The objects cooperate together to solve the program task.

Typical OOS Object Communication

Object Oriented Analysis and Design

· A program is a model of the subject of our domain of interest.

· We need to create a design which faithfully models the real-world problem we are solving.

· OO design is quite different than Procedural design, but it is actually a more natural way of modeling.

· A key element in system design, partitioning, is naturally present in OO Analysis and Design (OOA+D).

 Object Oriented Concepts

Class

· A class defines a type of an aggregate program element.

· A class consists of data elements (attributes) and operations. It encapsulates the attributes and operations.

· A class is a software representation of some entity that our OOS is modeling.

A Circle Class Definition

Object Oriented Concepts

Object

· An Object is an instance of a class.

· We may have many different instances of a class.

· Each object represents a specific entity.

· Each object has its own set of attributes

Four Circle Objects

Object Oriented Concepts

Each Circle Object has its own set of attributes
Object Oriented Concepts

Encapsulation and Interface of Classes

Object Oriented Concepts

Encapsulation

· Attributes and implementations of the operations are hidden and protected from the outside world.

· Data Structures and operations on them are contained in the class.

· Communication to objects is made abstract by use of class interface.

Object Oriented Concepts

Interface

· Implementation can change as long as the interface is constant.

· Interaction with object is through operations which are part of the public interface.

· The interface can be widened (operations added), and we can still interact with objects through former interface.

· Promotes the abstractions of the underlying implementation.

Object Oriented Concepts

Inheritance

· A class can be defined in terms of an existing class. This is usually referred to as inheritance or extension.

· A class which is being extended is the parent (super) class, and the extending class is the child (sub) class.

· A subclass inherits all attributes and operations of its superclass.

· Allows faster development of new classes which have a similarity to existing classes.

· Promotes object reuse. New classes contain tried-and-true properties of their superclasses.

Object Oriented Concepts

Inheritance

Object Oriented Concepts

Inheritance

· When we use the Generalization-Specialization inheritance, we say the subclass is-a-kind-of superclass.

· We can also say that the sublass object is a superclass object because it has all of the superclass attributes and can respond to all of the superclass operations.

· A cylinder is-a-kind-of circle.

Object Oriented Concepts

Polymorphism

· The term means many forms. In the vernacular, it’s closer to what you think you’ll get, is not always what actually get.

· The operations of a class are often referred to as the class methods.

· OO programming languages (OOPLs) allow a class to have more than one, even many methods having the same name.

· The methods are disambiguated by their signatures - the method’s parameter number, order, and type.

Object Oriented Concepts

Polymorphism

· Class methods which share a name are said to be overloaded. The method name is used two or more times in the class definition.

· A subclass inherits its superclass’s methods. A subclass may write its own version of the superclass method – one with the same signature as its parent. This is called overriding, and it provides an even more powerful polymorphism mechanism.

Object Oriented Concepts

Inheritance Hierarchy

· A class hierarchy is constructed by factoring common attributes and methods into super classes, and specialized attributes and methods into subclasses.

· To achieve polymorphism we may design superclasses for the express purpose of allowing handles to parent classes to refer to subclass object. Such classes may be abstract classes – classes which cannot be instantiated.

· The design of the inheritance hierarchy should consider maximum possible reuse of the classes in the design of the OOS as well as expansions of the system, and future related systems which can benefit from code reuse.

Object Oriented Concepts

Inheritance Hierarchy

A Three-Level Class Hierarchy

Object Oriented Analysis

Identifying Classes – classes can be many things

· Things
- an automobile engine, a piece of lumber

· External Entities
- a temperature sensor, a homeowner

· Roles
- cashier in a grocery store, a data entry clerk

· Occurrences
- a mouse click, an alert condition

· Organizational Units - the accounting department

· Places
- The state of Connecticut, Empire State Building

· Structures
- a Stack, a Queue, a List

· Association
- a product warranty: the association of a Product and Owner classes.

Object Oriented Analysis

Identifying Classes

· Coad and Yourdon suggest the following six criteria for determining if a potential class should be included in a OOS

1. Retained Information – information about its objects must be remembered for the successful operation of the system.

2. Needed Services – The class should have a set of identifiable operations to change the state of its attributes.

3. Multiple Attributes – The class should have at least two attributes.

4. Common Attributes – all objects of a prospective class should have the same set of identified attributes

5. Common Operations – all objects of the prospective class should need all identified operations.

6. Essential Requirements Entities – Any external entities to OOS which either produce or consume data critical to system operation.

Program Data

Procedures

� EMBED MS_ClipArt_Gallery ���

Program Data

…

Procedures operating on the Data

object A

object B

object E

object C

object D

object F

Class: Circle

Attributes:

radius: Integer

fill: Pattern

center: Point

…

Operations:

display()

setRadius()

setCenter()

…

Class: Circle

radius = 3

fill = “squiggly”

center = (5,3)

radius = 5

fill = “horizontal”

center = (0,0)

radius = 1.7

fill = “speckled”

center = (1,23)

radius = 6.5

fill = “checker”

center = (-5,2)

….

….

Class: Circle

Attributes:

radius: Integer

fill: Pattern

center: Point

…

Operations:

display()

setRadius()

setCenter()

…

Class: Cylinder

Attributes:

radius: Integer

fill: Pattern

center: Point

height: Integer

…

Operations:

display()

setRadius()

setCenter()

setheight()

…

Generalization

Specialization

Me too! I guess I’m a Circle.

I can set my radius and center. I’m a Circle

Class: Circle

Attributes:

radius: Integer

fill: Pattern

center: Point

…

Operations:

display()

display(color: Color);

setRadius(radius: Real)

setCenter(center: Point)

…

(

(

shape handle

shape handle

shape handle

(

DISPLAY!

Class:Cylinder

Operations:

display()

display(color: Color);

setRadius(radius: Real)

setCenter(center: Point)

setHeight(height: Integer)

…

Class:Circle

Operations:

display()

display(color: Color);

setRadius(radius: Real)

setCenter(center: Point)

…

Class:Shape

Operations:

display()

display(color: Color);

…

Class:Square

Operations:

display()

display(color: Color);

setLength(length: Real)

setWidth(width: Real)

…

PAGE
4
Introduction to Object Oriented Concepts – J. Dichter © 2001

_979897635

