
Using a Queuing Model to Analyze the
Performance of Web Servers

Khaled M. ELLEITHY, Member, IEEE and Anantha KOMARALINGAM

Department of Computer Science and Engineering
University of Bridgeport

Bridgeport, CT 06611
elleithy@bridgeport.edu; alakshmi@bridgeport.edu

Abstract-- Despite the increasing number of Web (i.e., HTTP)
servers in use each day, little is definitively known about their
performance characteristics. In this paper, we present a simple,
high-level, open queuing network model from which we derive
several general performance results for web servers on the
Internet. Also, we analyze multiple-server systems. A theoretical
upper bound on the serving capacity of web servers is defined. As
Web servers approach this boundary, response time increases
suddenly towards infinity, which disables the server. Limiting the
server's simultaneous connections prevents this problem. The
effects of file size, server speed, and network bandwidth on
response time are also investigated. In addition, the relative
merits of several methods of improving server performance are
evaluated.

Index Terms-- Web server, performance analysis, modeling,
queuing theory

I. INTRODUCTION

In the past few years the World Wide Web has experienced
phenomenal growth. Not only are millions browsing the Web,
but also hundreds of new Web sites are added each day [12].
Yet, despite the increasing number of Web (i.e., HTTP)
servers in use, little is definitively known about their
performance characteristics. Web server vendors are quite
happy to extol the performance virtues of their products, and
industry professionals abound with theories about how to
serve data faster; but these virtues and theories are generally
based upon anecdotal evidence, gut instinct, or narrow
empirical evidence that has little general utility.

Server hardware, web server software, and a connection to
the Internet are required elements of any web site, and they are
all expensive. To generate the best possible performance for
any web site, an understanding of the interrelated effects of
these three elements on web server performance is vital.

In this paper we present an analytical performance model of
web servers in which the Web server and the Internet are
collectively modeled as an open queuing network. Analysis of
this model yields several interesting results. Most importantly,
as the load on the Web server increases the time required to
serve a file increases very gradually (almost imperceptibly) up
to a point; thereafter, it increases suddenly and asymptotically
toward infinity. This asymptote defines a clear upper bound on

the serving capacity of web servers. This boundary is
particularly sensitive to the average size of the files served.

As the load on the server nears the boundary, a minor
increase in the load can rapidly plunge the server into a
situation-resembling deadlock, where it attempts to serve more
and more files at slower and slower speeds such that no files
(or very few) are successfully served. The majority of today’s
UNIX based servers allows a large number of simultaneous
connections, and is particularly susceptible to this problem.
Ironically, it is the servers on Macintosh and Windows
platforms, often criticized for their limited number of
simultaneous connections, which are guaranteed to avoid such
server deadlock.

The queuing model was also extended to investigate
multiple-server systems. Results indicate that in any multiple-
server system, balancing the service load between the servers
is crucial to optimal performance. In fact, a two-server system
in which one server is slower than another appears to perform
worse than the faster server alone.

Finally, several common schemes for improving Web server
performance were evaluated and compared. As expected,
when the network speed is the bottleneck, increasing network
speed generates the best performance improvement. But when
the bottleneck is the server itself, the best choice depends on
several factors.

In the sections that follow a survey of related work is
conducted and basic queuing theory is reviewed. The web
server model is then presented and analyzed, and the results
described above are derived. This analysis is followed by
thoughts on future research directions and some concluding
remarks.

II. RELATED WORK

A Web server together with a browser program (i.e., client)
constitutes a client- server system. A Web server is really just
a file server connected to its clients via the Internet. Several
others have used queuing models to analyze client-server
systems [1,2,3,5,6,9,10,11], but not all of these investigations
analyze the performance of these systems, [only 1,2,3,4,5
focus on performance] focusing instead on fault tolerance [10]
or file storage characteristics [1]. But in all cases, the structure
of the World Wide Web, the heterogeneous nature of Web
clients, and the idiosyncrasies of the HTTP protocol render

mailto:elleithy@bridgeport.edu
mailto:alakshmi@bridgeport.edu

these models inadequate as models of web servers. The
queuing models that have been discussed in the references are
all closed network models.

Typically these other investigations predate the emergence
of the Web as an entity worthy of study. They are designed
with conventional file servers in mind, and assume a
homogeneous LAN network architecture where the clients are
both limited and well defined. In these situations a closed
queuing network model is most appropriate.

Web servers do not conform to the assumptions built into
previous models. For any given Web server the number of
potential clients is in the tens of millions [12], and consist of a
variety of different Web browsers running on various
hardware platforms and connected to the Internet at several
different speeds [7,8]. Hence, the Web does not represent a
closed queuing system.

III. QUENING THEORY

As is often the case in computer systems, web servers
typically process many simultaneous jobs (i.e., file requests),
each of which contends for various shared resources:
processor time, file access, and network bandwidth. Since only
one job may use a resource at any time, all other jobs must
wait in a queue for their turn at the resource. As jobs receive
service at the resource, they are removed from the queue; all
the while, new jobs arrive and join the queue. Queuing theory
is a tool that helps to compute the size of those queues and the
time that jobs spend in them. In this paper, we concentrate on
the number of simultaneous HTTP GET file requests handled
by a server, and the total time required to service a request.

In this section we will present a very simple review of
important concepts from queuing theory. More complete
information is presented elsewhere [2,3,4,5,9].
Queuing theory views every service or resource as an abstract

system consisting of a single queue feeding one or more
servers. Associated with every queue is an arrival rate (A) --
the average rate at which new jobs arrive at the queue. The
average amount of time that it takes a server to process such
jobs is the service time (Ts) of the server, and the average
amount of time a job spends in the queue is the queuing time
(Tq). The average response time (T) is simply Ts + Tq.

If the arrival rate is less than the service rate (1/Ts) then the
queuing system is said to be stable; all jobs will eventually be
serviced, and the average queue size is bounded. On the other
hand, if A > (1/Ts) then the system is unstable and the queue
will grow without bound. The product of the arrival rate and
service time yields the utilization of the server

Utilization (U) = A*Ts

Utilization is number between 0 and 1 for all stable systems. A
utilization of 0 denotes an idle server, while a utilization of 1
denotes a server being used at maximum capacity.

If amount of time between job arrivals, (which is defined as
inter-arrival time) (1/A) is random and unpredictable then the

arrivals exhibit an exponential or "memory less" distribution.
This distribution is extremely important to queuing theory. A
queue in which the inter-arrival times and the service times are
exponentially distributed is known as an M/M/C queue, where
the M's represent the Markov or memory less nature of the
arrival and service rates, and the C denotes the number of
servers attached to the queue. When service history of a
queuing system is irrelevant to its future behavior --only the
current state of the system is important-- that history can be
ignored, greatly simplifying the mathematics. For example,
the response time of an M/M/1 queue is simply

T =
The response time curve of an M/M/1 queue as a function of

utilization is shown in Figure 1. At a utilization of 0 the
response time is just the service time; no job has to wait in a
queue. As utilization increases, the response time of the queue
grows gradually. Only when the utilization approaches 1 the
response time climb sharply toward infinity. As we will
demonstrate below, Web servers behave similarly.

Little's Law (N = AT) states that the average number of jobs
waiting in the queue (N) is equal to the product of the average
arrival rate and the average response time. Little's Law is
surprisingly general, and applies to all queuing systems that
are both stable and conservative (i.e., no work is lost when
switching between jobs). Little's Law is especially useful
when applied to queuing networks.

Figure 1. Response Time of a Queuing System

IV. A WEB SERVER MODEL

In this paper, we present a very simple, high level view of a
Web server, modeled as an open queuing network. Our goal is
to produce a generally applicable model that abstracts all
hardware and software details, but is detailed enough to
produce significant performance results regarding the
relationship between server and network speeds. In the current
model we have ignored the low-level details of the HTTP and
TCP/IP protocols, although future versions of the model may
benefit from such refinements. Similarly, the current model
acts as a simple file server over the Internet, and ignores both
common gateway interface applications (CGI) and "if-
modified" behavior [12].

Figure 2. Queuing Network Model of a Web Server

A diagram of our Web server queuing network model is
presented in Figure 2. This network consists of four nodes
(i.e., single-server queues); two for modeling the Web server
itself, and for two modeling the Internet communication
network. File requests (i.e., "jobs") arrive at the Web server
with frequency A. All one-time "initialization" processing is
performed at node SI. The job then proceeds to node SR where
a single buffer's worth of data is read from the file, processed,
and passed on to the network. At node SS this block of data is
transmitted to the Internet at the server's transfer rate (e.g., 1.5
MBits on a T1 line). This data travels via the Internet and is
received by the client's browser, represented by node SC. If the
file has not been fully transmitted, the "job" branches and
returns back to node SR for further processing. Otherwise, the
job is complete, and exits the network.

Notice that the branch is a probabilistic one; given an
average file size of F and buffer size B, the probability that the
file has been fully transmitted is p = B/F. Also, the arrival rate
at node SR (A') is the sum of the network's arrival rate (A), and
the rate of the jobs flowing from SC back to SR.

Several simplifying assumptions are built into the model.
The effect of the HTTP GET requests on the network is
ignored, since the requests are typically much smaller than the
files that are served. Also, it is assumed that the size of
requested files (and thus the service times) are distributed
exponentially. Although this may not be true for some Web
sites, this assumption is conservative; values based on
conservative approximations represent an upper bound on the
true values. Also, given fixed size buffers the service rates at
nodes SS and SC are probably not exponential. Again, this is a
conservative approximation.

The model has been implemented using Performance
Manager on an NT IIS Web server. Since the set up best fits
Jackson’s Network model, we will treat this model as
Jackson’s Network Model too and so the response time of the
queue is given by:

where the eight parameters in the formula are:

• Network Arrival Rate (A)
• Average File Size (F)
• Buffer Size (B)
• Initialization Time (I)
• Static Server Time (Y)
• Dynamic Server Rate (R)
• Server Network Bandwidth (S)
• Client Network Bandwidth (C)

Before analyzing the model, it is important to understand the
meaning of the eight model parameters, and how they were
applied during the analysis presented below.

Network arrival rate (A) is the average number of HTTP
file requests (i.e., "hits") received by the Web server each
second. It is important to understand that A denotes an average
and not an instantaneous value. Conceptually, it is often easier
to translate any reference to A into a corresponding "hits per
day" value; just multiply A by 60*60*24 = 86,400. Figure 3
illustrates this correspondence between arrival rate and "hits
per day".

Figure 3. Arrival Rate vs. Hits/Day

Average file size (F) is the average size (in bytes) of the files
served. Obviously, this value will vary widely from one Web
site to another. However, after visiting 1000 Web pages at
random --using the "random link" feature available from
several search engines-- and noting the size of every file
received, including graphics, the average thus obtained was
5,275 bytes. This value has been used to generate some of the
graphs below, wherever a fixed value of F was required.

Buffer size (B) is the size of the file chunks that are sent from
the server across the Internet to the client's browser. Often,
this value corresponds to the disk block size of the server
machine. Analysis of our model shows that this value plays an
insignificant role on overall server performance. An arbitrary
value of 2000 bytes was used to generate all the graphs below.

Initialization time (I), Static server time (Y), and Dynamic
server rate (R) collectively describe the speed at which the
Web server handles requests. We have represented the average
time required to perform various one-time initialization tasks

for each job (e.g., suffix mapping). The service rate of the SI
node is 1/I. Y represents the time spent processing a buffer
that is independent of the size of that buffer. Finally, R
represents the rate (bytes/second) at which the server
processes the buffer. The service rate of the SR node is 1/[Y +
(B/R)]. Web servers running on modern computers can
generally serve data much faster than today's networks can
transmit it.

Server network bandwidth (S) and Client network bandwidth
(C) collectively represent the transmission speed of the
Internet. S denotes the speed at which the server sends a buffer
of data to the Internet. Typical values for S are (128 Kbits/sec
- ISDN, 1.5 Mbits/sec - T1, and 6 Mbits/sec - T3). C denotes
the average speed at which client software receives a buffer.
Averaging the results from a current Internet user's survey [7,
8], a reasonable value for C is 707 Kbits/sec; this value was
used to generate the graphs below.

V. ANALYSIS of the WEB SERVER MODEL

As expected, the response time curves for the Web server
model resemble Figure 1. Figure 4 demonstrates the response
time for a typical server connected to the Internet via a T1
line. Notice that for values of A less than 35 (that's 3,024,000
hits/day!) the response time (T) is a mere fraction of a second.
However, as the server approaches full utilization T grows
asymptotically toward infinity. For this Web server 3,024,000
is a theoretical upper bound on the number of hits per day that
can be serviced. Henceforth, we will refer to this boundary as
the maximum capacity (M) of the Web server --M is also the
service rate of the Web server system.

For many people, this result may be counter-intuitive. It is a
common misconception that Web servers have no maximum
capacity --all jobs will eventually be serviced, albeit slowly--
and that response time grows approximately linearly as A
increases --the decay in performance is gradual. These
misconceptions could have tragic consequences if Web server
managers apply it.

Suppose a server is comfortably handling X hits per day,
average response times are 50% below unacceptable values,
and server utilization is increasing by only 2% of X per week.
According to misconceptions above it will take almost a year
before server response times double. However, if the server is
near maximum capacity then response times may jump well
beyond acceptable levels in a single busy day. Worse, the
increased response times may be so dramatic that they exceed
the patience of people browsing the site. At that point, the
Web site is experiencing a situation resembling deadlock,
where it attempts to serve more and more files at slower and
slower speeds such that no files (or very few) are successfully
served.

Given this situation, the remainder of this paper is devoted
to answering three questions.

• How do the model parameters above influence response
times and, in particular, maximum capacity?

• How can Web servers operating near maximum capacity
avoid a deadlock situation?

• What strategies most effectively improve the performance
of a Web server?

Figure 4. A Typical Response Time Curve

A. What Influences Response Time?

Actually, just about everything influences response time, at
least a little. But the influence of Buffer size is negligible, and
here after buffer size is assumed to be 2000 bytes. Similarly,
the Client Network Bandwidth has a very small effect on
response time and no effect on maximum capacity. Since Web
servers have no control over the Client Network Bandwidth
anyway, it is hereafter assumed to be 707 Kbits/second. The
effects of both Initialization Time and Static Server Time can
be simulated by a slight increase in Dynamic Server Rate. For
the purposes of this investigation it is easier to let Initialization
Time and Static Server Time be 0 and to let Dynamic Server
Rate alone represents server speed. The remaining model
parameters -- Average File Size, Dynamic Server Rate, and
Server Network Bandwidth-- all heavily influence both
response time and maximum capacity.

While the effect of Average File Size on Response Time
and Maximum Capacity is always significant, the effects of
Dynamic Server Rate and Server Network Bandwidth depend
upon whether the system bottleneck is the Web server or the
network bandwidth. Because modern computers can serve
files at Ethernet speeds and beyond (10+ Mbits), and the
typical Internet connections (i.e., 28.8K, ISDN, T1, T3) are
slower, the network bandwidth is almost always the
bottleneck.

Usually only very active multi-server sites (e.g., Yahoo,
NCSA, Playboy) have enough network bandwidth that the
Web server becomes the bottleneck. In this situation response
time and maximum capacity are determined exclusively by
network speed (S) and average file size (F); server speed (R) is
insignificant. In those rare cases when the server is the
bottleneck, it is server speed and average file size that are
important, and network speed, which can be ignored.

In addition, when the network is the bottleneck, average file
size (F) has a significant, effect on response time, as illustrated

in Figure 5. This graph was generated assuming the network
connection is a T1 (1.5 Mbits). The ridge denotes the
maximum capacity asymptote (values behind the ridge are not
meaningful). Notice that for any values of average file size the
shape of the (response time vs. arrival rate) response time
curve is essentially the same as in Figure 1. The greatest effect
of average file size is on the maximum capacity asymptote
(M), which appears to decrease exponentially with respect to
average file size.

Figure 5. Response Time given A and F
It is understandable that increasing Average File Size

decreases maximum capacity. A Web server that serves many
large files uses much of the available network bandwidth to do
so. However, it is somewhat surprising that this decrease is not
approximately linear, gradual, and predictable. In fact, when
Average File Size is relatively small (e.g., 5 Kbytes), a small
change in Average File Size can have a great effect on
maximum capacity. But when Average File Size is already
large, maximum capacity is already low, and small changes in
Average File Size have little effect.

Figure 6 illustrates the relationship between network
bandwidth (S) and response time. Notice that the maximum
capacity ridge is straight; hence, maximum capacity grows
approximately linearly with respect to network bandwidth.

The combined effects of Average File Size and network
bandwidth on maximum capacity are illustrated in Figure 7.
Notice that the effects of Average File Size on maximum
capacity are very volatile for average file sizes fewer than 20
Kbytes.

B. Avoiding Deadlock Situations

Deadlock situations occur when new jobs are arriving
almost as fast or faster than they are being served. The only
way to avoid this situation is to stop adding jobs to the queue
as A is close to M. This is difficult for Web servers, because
they typically do not monitor arrival rate. But according to
Little's Law, the number of jobs in a queuing system (N) is
equal to AT. For Web servers, N corresponds to the number of
simultaneous open TCP/IP connections: a known quantity.

Figure 6. Response Time given A and S.

Figure 7. Max. Capacity given F and S

Figure 8. Simultaneous Connections vs. A

Figure 8 illustrates the relationship between A and N for the
same server illustrated in Figure 4. As required by Little's
Law, the shape of this curve mimics that of the response time

curve, and the asymptote occurs at M. Thus, the magnitude of
N can be used to detect imminent deadlock situations.

For most UNIX and Windows NT based Web servers, the
number of simultaneous connections (N) is practically
unlimited. It appears that this "feature", often cited as the
primary advantage of UNIX based servers, is in fact a curse.
Ironically, most Macintosh and Windows based Web servers
already have a limit on the number of simultaneous open
TCP/IP connections, imposed by either the operating system
or the server software. When a Web server is nearing
maximum capacity, it should respond to new file requests with
the HTTP "come back later" response, and continue to
complete the jobs already in its queue. The browser software
should then automatically resubmit the request after several
seconds when the server is hopefully less busy. Unfortunately,
few servers generate this response, and no known browser
supports it.

C. Improving Web Server Performance
When Web server performance becomes unacceptable, there

are three obvious alternatives for improving it:
• Replace the server with a faster one
• Increase Network Bandwidth
• Add additional server

We have already demonstrated that using a faster computer
(i.e., increasing R) or increasing network bandwidth (S)
decreases response times and increases maximum capacity.
What we have not done is comparing the merits of each. Nor
have we described the effect of adding additional servers.

Sometimes it is not cost effective to completely replace a
working computer with a faster model. Instead, it is common
practice to add additional computers. The Web site content is
then either mirrored on all server machines, creating a RAIC
(Redundant Array of Inexpensive Computers), or divided
between the server machines [12]. This scalability is an
attractive feature of Web servers that run on relatively
inexpensive machines.
In order to evaluate the efficiency of a multi-server system

the queuing network model was altered as shown in Figure 9.
Jobs are directed to node SR1 with probability q, and to SR2
with probability (1 - q).

In this paper we have presented an abstract performance
model of Web servers in which the Web server and the
Internet are collectively modeled as an open queuing network.
Analysis of this model yields several interesting results. Most
importantly, as the service load on a Web server increases the
time required to serve a file increases very gradually (almost Figure 9. Queuing Network Model of a Multi-Server System

Using this new model we have investigated the relative
merits of RAICs. The solid curve in Figure 10 illustrates
response times of a Web server in the region well below
maximum capacity (Dynamic Server Rate = 10 Mbits
(Ethernet), network bandwidth = 1.5 Mbits (T1), and Average
File Size = 5000). Four alternatives were investigated.
Obviously, the best alternative in this situation, when the

network bandwidth is the bottleneck, is to increase the
network bandwidth. Doubling the server speed showed a very
slight improvement. Adding a second identical server in a
RAIC (not shown) had no effect at all. Finally, adding a
second, but slower, server in a RAIC actually increased the
response time (i.e., decreased performance).

Multi-server systems are very sensitive to mismatched
loads. Mismatched servers in a RAIC (i.e., q [not equal] 0.5)
overburden the slower server while the faster server may be
idle. In non-RAIC, multi-server systems mismatched loads can
also be caused by different average file sizes (F). However,
this can be exploited to help balance the load between
different model server machines.

Figure 10. Improving Performance when the Network is the

Bottleneck

Improving performance is even more interesting for those
very active sites where the server itself is the bottleneck.
Figure 11 demonstrates this situation. The best alternative, as
expected, is to double the server speed. The next best choice
depends upon the arrival rate experienced by the site. For
arrival rates under 110 (that's 9,504,000 hits per day!) the
second best choice is to double the network bandwidth. But
for higher arrival rates the second best choice is to add another
identical server in a RAIC. Finally, the worst choice is to add
a slower server in a RAIC, which causes a decrease in
performance.

IV. CONCLUSIONS

imperceptibly) up to a point; thereafter, it increases suddenly
and asymptotically toward infinity. This asymptote defines a
clear upper bound on the serving capacity of web servers. This
maximum capacity boundary is particularly sensitive to the
average size of the files served. By limiting the number of
simultaneous connections, a Web server can avoid deadlock
situations that occur as the server load approaches maximum
capacity. Also, the relative merits of several methods for
improving Web server performance were analyzed.

Figure 11. Improving Performance when the Server is the

Bottleneck

REFERENCES

[1] Drakopoulos, E. and M. J. Merges, "Performance Analysis of Client-
Server Storage Systems", IEEE Transactions on Computers, Vol. 41, No.
11, November 1992.

[2] Gelenbe, E. and I. Mitrani, Analysis and Synthesis of Computer Systems,
Academic Press, New York, 1980.

[3] King, P. J. B., Computer and Communication Systems Performance
Modelling, Prentice Hall International, UK, 1990.

[4] Kleinrock, L., Queueing Systems, Volume I: Theory, John Wiley and
Sons, New York, 1976.

[5] Kleinrock, L., Queueing Systems, Volume II: Computer Applications,
John Wiley and Sons, New York, 1976.

[6] Petriu, D. C. and C. M. Woodside, "Approximate MVA from Markov
Model of Software Client/Server Systems", 1991.

[7] Pitkow, James E. and Colleen M. Kehoe, Results from the Third WWW
User Survey, The World Wide Web Journal, Vol. 1, No. 1, 1995.

[8] Pitkow, James E. and Colleen M. Kehoe, "The Fourth GVU Center WWW
User Survey", http://www.cc.gatech.edu/gvu/user_surveys/, 1995.

[9] Pujolle, G. and E. Gelenbe, Introduction to Queueing Networks, John
Wiley & Sons, New York, 1987.

[10] Puliafito, A., S. Riccobene, and M. Scarpa, "Modelling of Client-Server
Systems", 1995.

[11] Trivedi, K. S., O.C., Ibe, and H. Choi, "Performance Evaluation of
Client-Server Systems", IEEE Transactions on Parallel and Distributed
Systems, Vol. 4, N. 11, November 1993.

[12] Wiederspan, J. and C. Shotton, Planning and Managing Web Sites on the
Macintosh, Addison-Wesley, 1996.

http://www.cc.gatech.edu/gvu/user_surveys/

	I. INTRODUCTION
	II. RELATED WORK
	IV. A WEB SERVER MODEL
	V. ANALYSIS of the WEB SERVER MODEL
	B. Avoiding Deadlock Situations
	C. Improving Web Server Performance

	IV. CONCLUSIONS
	REFERENCES

