vl Journal of Intelligent and Robotic Systems 31: 355-377, 2001. 355
‘w © 2001 Kluwer Academic Publishers. Printed in the Netherlands.

A PC-Based Simulator/Controller/Monitor
Software for a Generic 6-DOF Manipulator

TAREK M. SOBH, ABDELSHAKOUR A. ABUZNEID and RAUL MIHALI
Department of Compuler Science and Engineering, University of Bridgeport,
169 University Avenue, Bridgeport, CT 06601, U.S.A.

(Received: 26 October 1999; in final form: 21 March 2000)

Abstraet. General form application is a very important issue in industrial design. Prototyping a
design helps in determining system parameters, ranges and in structuring better systems. Robotics
is one of the industrial design fields in which prototyping is crucial for improved functionality. De-
veloping an environment that enables optimal and flexible design using reconfigurable links, joints,
actuators and sensors is essential for using robots in the education and industrial fields. We propose
4 PC-based software package to control, monitor, and simulate a generic 6-DOF (six degrees of
freedom) robot including a spherical wrist. This package may be used as a black box for the design
implementations or as a white (detailed) box for learning about the basics of robotics and simulation
technology.

Key words: automation, manipulator, prototyping, robot control, robot simulation.

1. Introduction

To design a complete and efficient robotics system there is a need for performing
a sequence of cascaded tasks. The design task starts from determining the applica-
tion of the robot, the performance requirements, and then determining the robot
configuration and parameters suitable for that application. The physical design
starts from gathering the parts and assembling the robot. Developing the required
software (controller, simulator and monitor) elements is the next task. The next
stage includes manipulator testing which determines the performance of the robot
and the efficiency of the design. Our aim is to build a complete PC-based software
package for control, monitoring and simulation of a 6-DOF manipulator, including
a spherical wrist. The design will be independent of any existing specific robot
parameters. The package will be an integration of several packages.

Figure 1 shows how such a PC-based robot could be controlled, possibly using
different schemes.

The idea for this work came from a project we have done in a robotics class at
University of Bridgeport. The project was to design a fully integrated package to
control, monitor, and simulate an SIR-1 robot. The SIR-1 robot is a 6-DOF robot
with a gripper. While working on the project, we continuously looked for the exis-
tence of similar prototyping packages on the market. We did a wide range search

356 TAREK M. SOBH ET AL.

Digital Control

Figure 1. Typical robot control setup.

and an exhaustive market survey of what was available. We searched a variety
of papers, books, book chapters, and web sites. We have also talked to a num-
ber of companies that manufacture manipulators. We found out that a reasonable
progress had been made in the field, however, most of the prototyping was done for
special or specific manipulators, mainly with numerical solutions. Unfortunately,
PC-based controller/monitor/simulator packages for generic manipulators are not
something common and sufficiently debated. Please visit the following URL’s for
more information:

www.bridgeport.edu/sobhdir/introb/node36.html
www.bridgeport.edu/sobhdir/introb/rep.html
www.bridgeport.edu/sobhdir/proj/wachter/
www.bridgeport.edu/sobhdir/proj/proto/paper.html

2. Background

The final design of the software package will be a collection of smaller packages.
Each of these packages will be independent of any specific set of robot parameters.
This can be done by making all calculations symbolically. Needless to say that will
make the mathematics more difficult. By using mathematical application packages
available nowadays such as Maple, Mathematica, Matlab and others, the job will
be easier but not trivial. The next few sections give a theoretical background.

2.1. FORWARD KINEMATICS

The standard Denavit—Hartenberg approach is being taken, Figure 2 showing a
physical six-link robot manipulator.

The D-H parameters for our prototype robot are shown in Table 1. The parame-
ters for the last 3 links are constants with the exception of 8’s, the joint variables,
and dg, the offset parameter, which represents the offset distance between O3 and
the center of the wrist O.

C

A PC-BASED SIMULATOR/CONTROLLER/MONITOR SOFTWARE

Figure 2. A physical six-link robot manipulator.

Table 1. Symbolic DH parameters for the robot.

Link a; o; d; 0;
1 ay o d; 61
2 a) dy 6,
3 as o3 d3 03
4 0 -90 0 04
5 0 +90 0 s
6 0 0 dg 06

The corresponding transformation matrix is

AS = A1 ArA3A4A5As,

where

A; = Rot, g, Trans, 4, Trans, 4, Rot, 4,
—s(@)cle) sE)s(o)

c(6:)

5(6;)
0
0

c(8;)c(a;)
s(a;) c(a;)
0 0

a;c(6;)

—c(0;)s(oy) ais(6;)

d;
1

357

0y

2

©)

358 TAREK M. SOBH ET AL.

2.2. INVERSE KINEMATICS

Inverse kinematics solves for the joint angles, given the desired position and ori-
entation in a Cartesian space. This is a more difficult problem than forward kine-
matics. The complexity of inverse kinematics can be described as follows. Given a
4 x 4 homogeneous transformation which sets the required position and orientation,

R d
H=[0 1], @)

where d and R are the given position and orientation of the tool frame relative to the
origin. The homogeneous transformation matrix results in 12 nonlinear equations
in 16-unknown variables (a,, a;, a3, a1, 0z, 03,04, ..., 6, d1, dy, d3, dg)

Tij(q1, ---,96) = Hjj, &)

wherei =1,2,3,j=1,2,3,4.
For example, to find the corresponding joint variables (01, 65, ds, 04, 856) for
the RRP : RRR manipulator shown in Figure 2 where

en e e dy

d
Ab = €1 €2 €3 v 6
0 e ey e d; ©
0 0 0 1

we must solve 12 simultaneous sets of nonlinear equations. See Appendix 1. The
first glance at a simple homogeneous transformation matrix eliminates the possi-
bility of finding the solution by solving those 12 simultaneous sets of nonlinear
trigonometric equations. These equations are much too difficult to solve directly in
closed form and therefore we need to develop efficient techniques that solve for the
particular kinematics structure of the manipulator. To solve the inverse kinematic
problem, a closed form solution of the equations or a numerical solution could
be used [8]. The closed form solution is preferable because in many applications
where the manipulator supports or is to be supported by a sensory system, the
results need to be supplied rapidly. Since the inverse kinematics can result in a
range of solutions rather than a unique one, finding a closed form will make it easy
to tmplement the fastest possible sensory tracking algorithm.

The aim of this work is to try to find a closed solution for a prototype robot
which is a general 3-DOF robot having an arbitrary kinematic configuration con-
nected to a spherical wrist. This closed form solution could be attained by different
approaches. One possible approach is to decouple the inverse kinematics problem
into two simpler problems, known respectively, as inverse position kinematics,
and inverse orientation kinematics [1]. To put it in another way, for a six-DOF
manipulator with a spherical wrist, the inverse kinematics problem may be divided
into two simpler problems, first by finding the position of intersection of the wrist
axes, the center, and then finding the orientation of the wrist. Let us suppose that

A PC-BASED SIMULATOR/CONTROLLER/MONITOR SOFTWARE 359

there are exactly six degrees of freedom and the last three joint axes intersect at a
point O. We express the rotational and positional equations as

R3(q1, ..., qs) = Rixs, ©))
dé(qi,...,q6) = d, ®)

where d and R are the given position and orientation of the tool frame relative to
the origin. The assumption of a spherical wrist means that the axes z4, z5 and z¢
intersect at O and hence the origins O4 and Os, assigned by the D-H convention,
will always be at the wrist center O. The important point of this assumption for
inverse kinematics is that the motion of the final three links about these axes will
not change the position of O. The position of the wrist center is thus a function only
of the first three joint variables. Since the origin of the tool frame Og is simply a
translation by a distance dg along the z5 axes from O, the vector Og, relative to
the frame 00X()Y()Z() is

06v - Ov = —d6Rvk, (9)

where the ,, symbol denotes the vectorial notation; note that R is multiplied by k
because it is a translation along z axes.

Suppose P, denotes the vector from the origin of the base frame to the wrist
center. Thus, in order to have the end-effector of the robot at the point d with the
orientation of the wrist center O located at the point

P. = d — dgRk, (10)

the orientation of the frame OgX(Y,Z, with respect to the base must be given
by R. If the components of the end-effector position d are denoted d,, dy, d, and
the components of the wrist center P, are denoted Py, Py, P,, then, in this case, the
equation results in the relationship

P, d, — deri3
Py = dy — d6r23 . (11)
P, d, — dgr3;

Using Equation (10), we may find the values of the first three joint variables.
Thus, for this class of manipulators, the determination of the inverse kinematics
can be summarized in 3 steps:

Step 1: Find q, g2, g3 such that the wrist center P, is located at P, = d — dgk.
Step 2: Using the joint variables determined in Step 1, evaluate RS.

Step 3: Find a set of Euler angles corresponding to the rotation matrix Rg =
(RO7'R.

360 TAREK M. SOBH ET AL.

2.3. VELOCITY AND INVERSE VELOCITY KINEMATICS

In order to move the manipulator at constant velocity, or at any prescribed ve-
locity, we must know the relationship between the velocity of the tool and joint
velocities. To calculate the velocity, the following Jacobian matrix should be con-
structed:

J = J1hJ3J4ds5 s, (12)
where
5= | @ X (On — 0;_1)] (13)
i Zi-1
if i is revolute and
_ K=
=%] (14)

if i is prismatic, where Z; is the first three elements in the 3rd column of Af) and
0; is the first three elements in the 4th column of Aj). Then the forward velocity
will be

X =J(g)q. (15)

The inverse velocity problem becomes one of solving the system of linear equa-
tions. The Inverse Velocity Kinematics will then be

g =J' X, ' (16)

where the singularities will be discussed in the following section.

2.4. ACCELERATION AND INVERSE ACCELERATION KINEMATICS

Differentiating (15) yields the acceleration equation

X = J (@i + (@4 an
By solving (17) for inverse acceleration, we find
i=J@ X -IJ@ V(@4 (18)

2.5. SINGULARITIES

Singularities represent configurations from which certain directions of motion may
be unattainable. It is possible to decouple the determination of a singular configu-
ration for those manipulators with a spherical wrist, into two simpler problems [9].
The first is to determine the arm singularities, that is, singularities resulting from

A PC-BASED SIMULATOR/CONTROLLER/MONITOR SOFTWARE 361

motion of the arm, which consists of the first three or more links, while the second
is to determine the wrist singularities resulting from motion of the spherical wrist.
Suppose that n = 6, that is, the manipulator consists of a 3-DOF arm with a 3-
DOF spherical wrist. In this case, the Jacobian matrix is a 6 x 6 matrix and a
configuration is singular if and only if

det J(g) = 0. (19)

If we now partition the Jacobian matrix into 3 x 3 blocks as

Ju
r=ty sa=[7 72 @

then, since the final three joints are always revolute,

Joz[Z3X(06—03) 24 X (Og — O4) ZSX(O6—05):|.

23 24 25 (21)

Since the wrist axes intersect at a common point O, if we choose the coordinate
frames so that O3 = 04 = 05 = Og = O, Jy becomes

[0 0 O
Jo= , 22
T lz u oz])
and the ith column J; of J, is
J=| @ (0 — Oi—l)] 23)
i Zi-1
if joint i is revolute, and
| zim
w=[5] o
if joint 7 is prismatic. In this case, the Jacobian matrix has the block triangular form
J11 0
J = 25
[Ja1 I] (25)
with the determinant
det J = det Jq; det J;, (26)

where J;; and J, are 3 x 3 matrices each. Jq; has the ith column z;_; X (O — 0;_1)
if joint i is revolute, and z;_; if joint { is prismatic, while

Jpo=1I[z3 z4 zs] 27

362 TAREK M. SOBH ET AL.

2.6. DYNAMICS

Manipulator dynamics is concerned with the equation of motion, the way in which
the manipulator moves in response to the torque applied by the actuators or exter-
nal forces [7]. There are two problems related to manipulator dynamics that are
important to solve:

e inverse dynamics in which the manipulator’s equations of motion are solved for
given motion to determine the generalized forces required for each joint (control
stage) and

e direct dynamics in which the equations of motion are integrated to determine
the generalized coordinate response to applied generalized forces (simulation
stage).

The equation of motion for an n-axes manipulator is given by

Q=M(@)§+Cg 9q+F@G+G@), (28)

where

q is the vector of generalized joint coordinates describing the pose of the manip-
ulator
q is the vector of joint velocities
g is the vector of joint accelerations
M is the symmetric joint-space inertia matrix, or a manipulator inertia tensor
C describes Coriolis and centripetal effects
F describes viscous and Coulomb friction and is not generally considered part of
rigid-body dynamics
G is the gravity loading
Q is the vector of generalized forces associated with generalized coordinates g.

The equation may be derived via a number of techniques, including the La-
grangian method [?]. Due to the enormous computational cost of this approach
it is always difficult to compute the manipulator torque for real-time control. To
achieve a real-time performance, many approaches were suggested, including table
lookup and approximation [3]. The most common approximation is to ignore the
velocity-dependent term C, since accurate positioning and high speed motion are
exclusive in a typical robot application. Practically, a PID controller might be a
good option to achieve a real-time performance,

Q=é;1+kvE+ka+KifEdt, (29)

where k,, k, and k; are the derivative, proportional and integral parameters, respec-
tively. See Figure 3 for a scheme of a PID control loop.
The advantages of using a PID controller are the following:

e Simple to implement;

A PC-BASED SIMULATOR/CONTROLLER/MONITOR SOFTWARE 363

x Inverse &
Kinematics | - Rabot —.:(‘
:——1 (position, -H 3 0 g
x velocity and a4
x acceleration) | &
Ke| |Kp Ki Integrator
z
34—

Figure 3. PID control loop.

o Suitable for a real-time control;
e The behavior of the system can be controlled by changing the feedback gains.

For a concrete decision on the controlling technique, often more details are
needed, such as mechanics or motors, the case in which the controller will be
adjusted accordingly.

2.7. SIMULATION

To simulate the motion of a manipulator, we may use the simulation module by
manipulating (28)

§=M"(@IQ~-Cq. 94— F@G) -Gl (30)

This represents a direct or integral or forward dynamic formulation giving a
joint motion in terms of input torque. M (g) is a symmetric joint-space inertia
matrix and for a 6-DOF manipulator M it is a 6 x 6 symmetric matrix. C(g, 4)
is the manipulator Coriolis/centripetal torque and for the 6-DOF manipulator C
will be a 6 x 1 matrix. F(g) is the joint friction torque, where

B +1, 6<0,

E@={Bﬂ4ﬁ Y 31

Figure 4 shows the simulation loop.

2.8. TRAJECTORY GENERATOR

The trajectory generation describes the position velocity and acceleration of each
link. This includes the way how the front user interfaces to describe the desired
behavior of the manipulator. This could be a very complicated problem depending

364 TAREK M. SOBH ET AL.

N

ot

Inverse

Ll‘LJ:& ‘g_l =~

: }qfuemalics(po System Robot [
— sition, velocity Controller

and
x| acceleration)

[{mer update rate

Trajectory
Generator

Figure 4. Simulation loop.

)

o Inverse |
. | Kinematics(po #
—

P

System "
X ston, velociy |__p Robot

Cortroller
and
x_| acceleration) 4

| frner update rate

Trajectory
Generator

=

Figure 5. Trajectory generator integrated in the control loop.

on the desired accuracy of the system. In some applications we might need to spec-
ify only the goal position, whereas in other applications, we might need to specify
the velocity at which the end-effector should move. Since the trajectory generation
occurs at run time on a digital computer, the trajectory points are calculated at a
certain rate, called the path update rate. One disadvantage of using a PID controller
is a high update rate that is required to achieve a reasonable accuracy.

Our package role here is to calculate trajectory points that generate a smooth
motion for the manipulator. The smoothness of motion is a very important issue
due to physical considerations such as the required torque that causes this motion,
the friction at the joints, and the frequency of update required to minimize the
sampling error — cubic polynomial trajectories were used for the interpolation.

Figure 5 shows how the trajectory generator can be integrated in the control
loop. It also shows two update rates, one is the inner update rate which updates the

A PC-BASED SIMULATOR/CONTROLLER/MONITOR SOFTWARE 365

system control with the actual joint position and velocity. The other updates the
system control with the required joint values. The sampling of the two update rates
can be different.

3. Package Outline

The package will handle a 6-DOF robot which includes a spherical wrist. Thus,
the first three joints could be revolute or prismatic, which yields 8 different con-
figurations of manipulators (i.e., XXX : RRR (X-denotes any type of link, R de-
notes a revolute link)). The user may use this package as a black box for design
applications and as a white box for education and training purposes.

The first input is the manipulator configuration, see Table IL. The package will
ask for the D-H parameters one after another. By the manipulator configuration,
the package recognizes what the variables of the manipulator are.

If the package is used as a white box, the package shows a menu with a list of
tasks that the user may select.

The tasks are listed in Ttable ITI. The user then types the number of the task
that should be performed. The package will ask for other inputs required to do the
calculations for the assigned job.

The black box includes:

1. Full control loop implementation(PID and Dynamics based).
2. Full simulation loop.
3. GUI with error analysis.

The inputs and outputs can be summarized in the following sections.

3.1. FORWARD KINEMATICS

1/P : g; where g; will be 6; if the joint is revolute, otherwise, it will be d;

O/P X = T14,
y =T,
Table I1.

1 RRR:RRR
2 PRR:RRR
3 RPR:RRR
4 PPR:RRR
5 RPP:RRR
6 PRP:RRR
7 RPP:RRR
8 PPP:RRR

366 TAREK M. SOBH ET AL.

Table 111.

[1] Forward Kinematics

2] Inverse Kinematics

[3] Velocity Kinematics

4] Inverse Velocity Kinematics

[5] Acceleration Kinematics

[6] Inverse Acceleration Kinematics
[7] Dynamics

[8] Simulation

[8] Simulation

[10] Trajectory Generation

z = T,

w =Ty T Tnl
wy=[T12 T T3l
w3 =[T13 Tz Tzl

where A is the transformation matrix.

3.2. INVERSE KINEMATICS

I/P:x,y,z, w, ws, ws,
O/P : g; where g; = 0; if the ith joint is revolute, and g; = d; if it is prismatic.

3.3. VELOCITY KINEMATICS
I/P:6,6s,...,06and 6;,6,, ..., 6,

O/P : vy, vy, U, Wy, Wy, Wy,

where 6; is the ith joint velocity, v is a linear tool velocity vector, and w is an
angular tool velocity vector.

3.4. INVERSE VELOCITY KINEMATICS

I/P:6:,0,,...,66and vy, vy, Uy, Wy, Wy, Wy,

O/P:61,6,,...,66.

3.5. ACCELERATION KINEMATICS

I/P : 91,92, ...,96, él,éz, ...,és andé'l,é’z, ...96,
O/P . aXa ayaaza wx’ wy9 wz,

A PC-BASED SIMULATOR/CONTROLLER/MONITOR SOFTWARE 367

where 6, is the ith joint acceleration, « is the linear tool acceleration, and w is the
angular tool acceleration.

3.6. INVERSE ACCELERATION KINEMATICS

I/P:61,6,,...,06 61,65, ...,0s and a,, ay, a;, Wy, Wy, Wy,
O/P : 91,92, ,96.

3.7. PID CONTROLLER AND TRAJECTORY GENERATION

I/P: x,)&,.jc','/'cp, ky, ki,
O/P : 9,', 9,',9,'.

The trajectory generator updates the controller with a new position of the manipu-
lator targets.

3.8. SIMULATION

/P : x, %, %, M7\ (@), C(q.4), F(§). G(q),
O/P . 9,'.

Dynamics parameters will be:

mass — mass of the link

rx — link COG with respect to the link coordinate frame
ry

rz

Ixx — elements of link inertia tensor about the link COG
Iyy

Izz

Ixy

Iyz

Ixz

Jm — armature inertia

G - reduction gear ratio/joint speed/link speed

B — viscous friction, motor referred

Tc+ — coulomb friction (positive rotation) motor referred
Tc— — coulomb friction (negative rotation) motor referred

4. Project Ideas and Progress

One target of the package is to find closed form solutions such that a direct sub-
stitution be made when parameters are entered. That requires to determine which
parameters should be variables and which should be constants [2]. Variables could

368 TAREK M. SOBH ET AL.

La

ENTER ROBOT
CONFIGURATION
(TABLE 2)

i

ENTER
CONFIGURATION
VARIABLES

NO

CONTROLLER/MONITOR

SAME e /SIMULATOR 10
CONF.
ENTER TASK #
TABLE 3
CALL TASK HANDLER vo

Figure 6. Task flow chart.

be robot parameter configuration variables or state variables. The former are vari-
ables that define the structure of the manipulator, so they are constants for the
same robot, i.e., a’s and «’s. The latter describe the state of the robot (Joint Vari-
able). Thus, §; may be a state variable if the ith joint is revolute otherwise, it is
a configuration variable. The same thing for d; where it will be a state variable
if the joint is prismatic. When the program is run, it will ask for the configura-
tion of the robot (one of those listed in Table IT). Then the program will decide
what the robot configuration variables are and ask the user to enter them one
after another. According to the task, the program is asked to run, it will ask for
the state variables. For example if the program is asked to calculate the Inverse
Kinematics, the program will ask for the target Cartesian position and orientation
to get the values of g’s as an output. When the front user asks to do a task, the
program calls the task handler. The task handler is a huge set of equations that
are invoked when the front user enters the required input, and displays the results
rapidly.

Figure 6 shows the task flow chart.

To find out the final and modified shape of equations for each task, a lot of
math work has to be done. The next few sections give a few examples of how we
managed to do the math chores.

A PC-BASED SIMULATOR/CONTROLLER/MONITOR SOFTWARE 369
Closed Form Solutions for a Jacobian and an Inverse Jacobian

A Jacobian and an Inverse Jacobian are fundamental objects to calculate the ve-
locity and inverse velocity as shown in (15) and (16). We have used Maple as a
math engine to find the Jacobian. It starts from defining the variables (a;, «;, 6;
and d;). After that the program starts calculating A;’s and then finding the final
transformation matrix

AS = A1A2A3A4A5As.

To calculate the Jacobian, z;’s and O;’s should be involved. Maple computes
them and stores them as variables. By now all the parameters required to evaluate
the Jacobian are ready, we just let Maple find them out. The solved Jacobian con-
tains a very large number of sines and cosines (inappropriate for using it directly as
a code and compile it) and this is passed through simplifications, Maple can handle
the task. Afterwards, Maple calculates the inverse Jacobian. To pass the result of
the inverse Jacobian, it should be converted to an understandable and simplified C
code. This job has to be done for each of the eight robot configurations listed in
Table I. Appendix 2 shows how to use Maple to calculate the Jacobian matrix for
RRP:RRR.

Closed Form Solutions for % J (@)

The derivative of Jacobian is required for calculating the acceleration as indicated
in 16. We have to derive Jacobians for ¢ as an exterior derivative. Since the ver-
sion of Maple we used does not do this job and Mathematica does, the output of
Maple gets converted to be a suitable input for Mathematica. Then Mathematica
differentiates the Jacobian and gets the output as a collection of sines and cosines.
Although both Mathematica and Maple can pursue a further simplification, we
preferred Maple’s output and so a conversion from Mathematica back to Maple is
required. Finally, a simplified C-code is found for the derivative of the Jacobian.
This procedure is used for each configuration of the eight robot configurations.
The derivative will be one part required to evaluate the acceleration and inverse
acceleration kinematics as shown in (17) and (18). Appendix 3 shows the derivative
for the RRP : RRR manipulator.

The two examples mentioned above show how it is tough in general to find
closed form solutions, but by playing around with different tools, it may be a
reality. We keep doing this until we find final closed form solutions for the 6-DOF
robot, including a spherical wrist. After we do all control and simulation parts, this
package is supported by a 3-D and 2-D graphical monitoring system.

Figure 7 shows the monitoring system for the SIR-1 robot as an example. The
monitoring will be supported with a controller and a simulator. Figure 8 shows the
interface window for the PID controller simulator.

370 TAREK M. SOBH ET AL.

University Of Bridgaport
C.E. Dapartrent
Varli.O

Manipulator Status

Position:

X= ¢ 0.000000 >
Y= < 25.000000 ?
Z= < 40.900002 >

Motor steps:

Base =< 0)
Shouldar = ¢ 0 >
Elbow = € 02

Manipulator Centrol
Press <CR> to Enter reu coordinates, Or °Esc.’ to quit:

Figure 7. Monitoring menu for the SIR-1 robot.

@) Animation Control Pop st Gain fropInteyy
K Shating

O View Point & Light Sowee
© Light Sorce

O Zon

O ran

H
i

Gain

3
8
L

P X
cmmuw e m o ®w B
P LY
Cmrmw s me N E W
P T R
em N Wean v m®
P A N NI Y
C R s~ ®®
R NMWAAD D W
orRmw s D~ @
er RN WL A v w D

i E

(-]

Figure 8. The interface window for the PID controller simulator.

5. Conclusion

A PC-based software package for control, monitoring, and simulation of a 6-DOF,
including a spherical wrist, manipulator has been built. The design of the software
package relies on symbolic calculations. The design is independent of specific
robot parameters, has a generic character and can be used in various design imple-
mentations or for learning about the basics of robotics and simulation technology.

A PC-BASED SIMULATOR/CONTROLLER/MONITOR SOFTWARE 371

Appendix 1

Transformation Matrix for RRP : RRR with(linalg).

Only an excerpt of the material is being listed here due to space limitations, for
the entire output please visit
http://www.bridgeport.edu/"abuzneid/ppp/node27.html
#SECTION000100000000000000000

Warning, new definition for norm Warning, new definition for trace

al :=al;

al :=al
a2 = a2;

a2 :=a2
 COTT)
theta6 := theta6;

66 := 66

Al :=matrix([[cos(thetal), —sin(thetal) % cos(alphal), sin(thetal) *
sin(alphal), al * cos(thetal)], [sin(thetal), cos(thetal) * cos(alphal),
—cos(thetal) x sin(alphal), al x sin(thetal)], [0, sin(alphal), cos(alphal),
d1}, [0, 0,0, 111);

cos(f1) —sin(B1)cos(wl) sin(@1)sin(xl) alcos(B1)
sin(@1) cos(61)cos(xl) —cos(@1)sin(xl) alsin(B1)
0 sin(ee1) cos(ae1) dl
0 0 0 1

Al :=

A6 := matrix([[cos(thetab), —sin(thetab) * cos(alpha6), sin(thetab) *
sin(alpha6), a6 = cos(theta6)], [sin(thetab), cos(theta6) * cos(alpha6),
—cos(theta6) * sin(alpha6), a6 * sin(theta6)], [0, sin(alphab), cos(alphab),
d6], [0, 0, 0, 1]]);

cos(f6) —sin(66) O

| sin(@6) cos(@6) O O
A6 := 0 0 1
0

0 0

AA = evalm(Al& x A2& * A3& *x Ad& x A5& x A6) :
The next 12 nonlinear equations should be solved to find out the Inverse Kine-
matics of the Manipulator;

372

e3l =

e31 =
(R)
Appendix 2

TAREK M. SOBH ET AL.
simplify(AA[3, 1]);

cos(66) cos(65) cos(84) sin(x 1) sin(62) cos(63)

+ cos(66) cos(05) cos(64) sin(03) sin(a 1) cos(62) cos(a2)
+ cos(06) cos(05) cos(64) sin(03) cos(a 1) sin(x2)

— cos(06) cos(85) sin(64) sin(a 1) sin(62) sin(63) cos(ce3)
+ cos(06) cos(A5) sin(04) cos(#3) cos(x3) sin(a 1) cos(2) cos(c2)
+ cos(06) cos(05) sin(84) cos(83) cos(a3) cos(a 1) sin(a2)
— cos(06) cos(85) sin(64) sin(a3) sin(a 1) cos(62) sin(cr2)
+ cos(86) cos(95) sin(64) sin(a3) cos(x1) cos(x?2)

— ¢0s(86) sin(85) sin(« 1) sin(f2) sin(63) sin(ct3)

+ cos(06) sin(05) cos(83) sin(a3) sin(ax 1) cos(62) cos(x2)
+ cos(06) sin(05) cos(03) sin(a3) cos(a 1) sin(w2)

+ cos(66) sin(05) cos(a3) sin(w 1) cos(62) sin(a2)

— ¢c0s(86) sin(85) cos(3) cos(a 1) cos(a2)

— sin(86) sin(#4) sin(x 1) sin(62) cos(03)

— 5in(06) sin(#4) sin(63) sin(a 1) cos(82) cos(a2)

— sin(#6) sin(H4) sin(03) cos(x 1) sin(x2)

— sin(#6) cos(64) sin(x 1) sin(62) sin(83) cos(a3)

+ sin(86) cos(64) cos(63) cos(a3) sin(xr 1) cos(62) cos(a2)
+ sin(06) cos(84) cos(03) cos(a3) cos(ce 1) sin(x2)

— sin(#6) cos(p4) sin(a3) sin(x 1) cos(82) sin(a2)

+ sin(66) cos(64) sin(a3) cos(a1) cos(x2)

Only an excerpt of the material is being listed here due to space limitations, for the
entire output please visit
http://www.bridgeport.edu/ abuzneid/ppp/node27.html
#SECTION000100000000000000000

This is a Jacobian for RRP: RRR

file name: JRRP.mws

al :=al;

al :==al

theta6 := theta6;

06 := 66

A PC-BASED SIMULATOR/CONTROLLER/MONITOR SOFTWARE 373

Al := matrix([[cos(thetal), —sin(thetal) x cos(alphal), sin(thetal) *
sin(alphal), al * cos(thetal)], [sin(thetal), cos(thetal) % cos(alphal),
—cos(thetal) % sin(alphal), al x sin(thetal)], [0, sin(alphal), cos(alphal),
d1],10,0,0, 1]1);

cos(91) —sin(@1)cos(al) sin(d1) sin(exl) al cos(01)
sin(@1) cos(@1)cos(wl) —cos(01)sin(al) alsin(61)

0 sin(o1) cos(al) dl
0 0 0 1
O)
J66 = J[6, 6];

J66 := ((sin(ar1) sin(2) cos(93) + %1 sin(03))cos(04) + (
| — sin(ar1) sin(62) sin(93) cos(e3) + %1 cos(63) cos(a3)
+ (= sin(a1) cos(62) sin(cr2)
+ cos(a1) cos(a2)) sin(x3)) sin(#4)) sin(85) — (
— sin(ar1) sin(62) sin(93) sin(a3) + %1 cos(63) sin(a3)
— (—sin(a1) cos(02) sin(a2) + cos(ar1) cos(@2)) cos(a3)) cos(85)
%1 := sin(l) cos(92) cos(xr2) + cos(al) sin(xr2)

Then the Jacobian is converted to a C Code
C(J,optimized);

t1 = sin(thetal);

t2 = cos(theta2);

(ST)
51 = (124*t25+t39*t40)*t43-(-t45+t46-t47)*t49;
(ST)

184 = -t141*140+t148*25;
J[0][0] = -t52-t54-t56-t57-t59-t61+t62-al *t1;

(ST)
J[1][0] = t158+t160+t162+t163+t165-t166+t167+al *t4;
PP)

J[51[5]1 = 192;

Appendix 3

Only an excerpt of the material is being listed here due to space limitations, for the
entire output please visit

hitp://www.bridgeport.edu/ abuzneid/ppp/node27.html
#SECTION000100000000000000000

374 TAREK M. SOBH ET AL.

DJ[1,1]:= —(al xcos(thetal) xdthetal) — a2 xcos(thetal) *cos(thetal) x
dthetal — a2 x cos(alphal) * cos(thetal) x cos(thetal) * dtheta2 — d2 *
dthetal % sin(alphal) % sin(thetal) + a2 % cos(alphal) x dtheral *
sin(thetal) % sin(theta2) + a2 * dtheta2 x sin(thetal) x sin(thetal) — d3 x
(cos(alpha2) % dthetal « sin(alphal) % sin(thetal) + cos(alphal) x*
cos(theta) = dthetal x sin(alpha2) * sin(thetal) + cos(theta) x dtheta2 x
sin(alpha2) x sin(thetal) + cos(thetal) x dthetal x sin(alpha) x
sin(theta2) + cos(alphal) * cos(thetal) x dtheta x sin(alpha) x*
sin(theta2)) — a3 * cos(theta3) x (cos(thetal) * cos(thetal) x dthetal +
cos(alphal) x cos(thetal) % cos(theta) x dtheta2 — cos(alphal) x
dthetal x sin(thetal) * sin(theta2) — dtheta2 sin(thetal) x sin(thetal)) —
dd3 x (—(cos(alpha2) * cos(thetal) = sin(alphal)) — cos(alphal) =*
cos(thetal) * cos(theta2) * sin(alpha2)+sin(alpha) x* sin(thetal) =x
sin(theta2)) — a3 * (—(cos(alphal) * cos(alpha2) * cos(theta2) * dthetal x
sin(thetal)) — cos(alpha2) x cos(theta2) = dtheta2 x sin(thetal) + dthetal *
sin(alphal) * sin(alpha2) % sin(thetal) — cos(alpha2) x cos(thetal) x
dthetal % sin(theta2) — cos(alphal) x cos(alphal) * cos(thetal) x
dtheta2 % sin(theta?)) = sin(theta3) — d6 = (—(cos(thetaS) x (cos(theta3)
sin(alpha3) * (—(cos(alphal) x cos(alpha2) x cos(thetal) * dthetal x
sin(thetal)) — cos(alpha?2) = cos(theta2) = dtheta2 x sin(thetal) + dthetal %
sin(alphal) x sin(alpha2) x sin(thetal) — cos(alpha) * cos(thetal) x
dthetal sin(theta2) — cos(alphal) * cos(alpha?2) x cos(thetal) * dthetal *
sin(theta2)) — cos(alpha3) * (cos(alpha2) % dthetal x sin(alphal) x
sin(thetal) + cos(alphal) x cos(theta) % dthetal * sin(alpha2) x
sin(thetal) + cos(theta2) x dtheta2 x sin(alpha2) * sin(thetal) +
cos(thetal) * dthetal % sin(alpha2) x sin(theta2) + cos(alphal) *
cos(thetal) x dtheta2 x sin(alpha2) x sin(thetal)) — sin(alpha3) =*
(cos(thetal) = cos(theta2) % dthetal + cos(alphal) * cos(thetal) =
cos(theta2) % dtheta2 — cos(alphal) * dthetal * sin(thetal) * sin(theta) —
dtheta? x sin(thetal) x sin(theta2)) * sin(theta3))) + cos(theta5) * dthetaS *
(cos(theta4) * (cos(theta3) x (cos(thetal2) * sin(thetal) + cos(alphal) *
cos(thetal) % sin(theta2)) + (cos(alphal) % cos(alpha2) * cos(thetal) x*
cos(theta2) — cos(thetal) x sin(alphal) x sin(alphal) — cos(alphal) *
sin(thetal) * sin(theta2)) = sin(theta3)) + (cos(alpha3) * cos(theta3) =
(cos(alphal) * cos(alpha2) * cos(thetal) * cos(thetal) — cos(thetal) x*
sin(alphal) * sin(alpha2) — cos(alphal) * sin(thetal) * sin(theta)) +
sin(alpha3) * (—(cos(alpha2) * cos(thetal) * sin(alphal)) — cos(alphal) %
cos(thetal) * cos(theta2) * sin(alpha2) + sin(alpha2) x sin(thetal) *
sin(theta2)) — cos(alpha3) x (cos(theta2) * sin(thetal) + cos(alphal) *
cos(thetal) % sin(theta2)) * sin(theta3)) * sin(thetad)) + dthetad *
(cos(theta3) x sin(alpha3) * (cos(alphal) = cos(alpha2) x cos(thetal) x
cos(theta2) — cos(thetal) % sin(alphal) x sin(alphal) — cos(alpha) x
sin(thetal) x sin(theta2)) — cos(alpha3) * (—(cos(alpha2) * cos(thetal) %

A PC-BASED SIMULATOR/CONTROLLER/MONITOR SOFTWARE 375

sin(alphal)) — cos(alphal) % cos(thetal) % cos(theta) * sin(alpha2) +
sin(alpha2) * sin(thetal) * sin(theta)) — sin(alpha3) * (cos(thetal)
sin(thetal) + cos(alphal) % cos(thetal) * sin(thetal)) *x sin(theta3)) *
sin(theta5) + (cos(thetad) * dtheta4 * (cos(alpha3) % cos(theta3) =*

(cos(alphal) * cos(alpha) = cos(thetal) % cos(theta2) — cos(thetal) *
sin(alphal) % sin(alpha2) — cos(alpha2) = sin(thetal) * sin(thetal)) +
sin(alpha3) = (—(cos(alphal) * cos(thetal) = sin(alphal)) — cos(alphal) *
cos(thetal) * cos(theta) = sin(alpha2) + sin(alpha) = sin(thetal) *
sin(theta)) — cos(alpha3) * (cos(theta) = sin(thetal) + cos(alphal) *
cos(thetal) * sin(theta2)) = sin(theta3)) + cos(thetad) = (cos(theta3) =
(cos(thetal) = cos(theta) * dthetal + cos(alphal) * cos(thetal)
cos(theta2) x dtheta — cos(alphal) = dthetal * sin(thetal) % sin(theta2) —
dtheta? * sin(thetal) * sin(thetal)) + (—(cos(alphal) * cos(alpha2) =
cos(theta2) = dthetal * sin(thetal)) — cos(alpha2) * cos(theta) *
dtheta x sin(thetal) + dthetal * sin(alphal) x sin(alpha?) * sin(thetal) —
cos(alpha) * cos(thetal) % dthetal * sin(theta2) — cos(alphal) *
cos(alpha) x cos(thetal) % dtheta? x* sin(theta)) = sin(theta3)) —
dthetad4 % (cos(theta3) = (cos(theta) #* sin(thetal) 4+ cos(alphal) =*
cos(thetal) x sin(theta2)) + (cos(alphal) % cos(alpha2) % cos(theral) =
cos(theta) — cos(thetal) * sin(alphal) * sin(alpha2) — cos(alpha2) =
sin(thetal) = sin(theta)) % sin(theta3)) % sin(thetad) + (cos(alphal3) *
cos(theta3) = (—(cos(alphal) * cos(alpha) * cos(theta) * dthetal =*
sin(thetal)) — cos(alpha?) % cos(theta) = dtheta % sin(thetal) + dthetal *
sin(alphal) * sin(alpha) * sin(thetal) — cos(alpha) % cos(thetal) *
dthetal * sin(theta) — cos(alphal) % cos(alpha2) % cos(thetal) * dtheta?2 *
sin(theta2)) + sin(alpha3) * (cos(alpha) = dthetal x sin(alphal) x
sin(thetal) + cos(alphal) * cos(theta2) * dthetal * sin(alpha2)
sin(thetal) + cos(theta2) % dtheta2 % sin(alpha) x sin(thetal) +
cos(thetal) * dthetal = sin(alpha) * sin(theta) + cos(alphal) *
cos(thetal) #* dtheta2 % sin(alpha) = sin(theta)) — cos(alpha3) *
(cos(thetal) = cos(theta) * dthetal + cos(alphal) % cos(thetal)
cos(theta2) x dtheta — cos(alphal) = dthetal * sin(thetal) % sin(theta) —
dtheta2 #* sin(thetal) * sin(theta2)) * sin(theta3)) * sin(theta4))
sin(thetal));

DJ[6, 4] := cos(alpha3) * dtheta2 = sin(alphal) = sin(alpha2)
sin(theta2) + cos(alpha) * cos(theta3) * dtheta2 = sin(alphal)
sin(alpha3) = sin(theta?) + cos(theta2) % dtheta2 * sin(alphal)
sin(alpha3) = sin(theta3);

DJ16, 5] := cos(thetad) % (—(cos(alpha2) = cos(alpha3) = cos(theta3) =
dtheta2 = sin(alphal) x sin(theta2)) + dtheta2 x sin(alphal) = sin(alpha2) =
sin(alpha3) * sin(theta?) — cos(alpha3) % cos(theta2) x dtheta? =

*

* W R

376 TAREK M. SOBH ET AL.

sin(alphal) * sin(theta3)) — cos(thetad) * dthetad % (cos(theta3) *
sin(alphal) % sin(thetal) + (cos(alpha) cos(theta2) * sin(alphal) +
cos(alphal) x sin(alpha2)) % sin(theta3)) — dthetad % (cos(alpha3)
cos(theta3) x (cos(alpha2) * cos(thetal) * sin(alphal) + cos(alphal) x
sin(alpha)) + (cos(alphal) * cos(alpha2) — cos(theta2) % sin(alphal)
sin(alpha2)) * sin(alpha3) — cos(alpha3) * sin(alphal) x sin(theta) *
sin(theta3)) * sin(theta4) — (cos(thetal) x cos(theta3) = dtheta2 =*
sin(alphal) — cos(alpha2) * dthetal x sin(alphal) % sin(thetal)
sin(theta3)) x sin(theta4);

¥*

DJ[6, 6] := —(cos(theta5) * (—(cos(alpha3) x* dtheta? * sin(alphal) =
sin(alpha2) * sin(theta2)) — cos(alphal) x* cos(theta3) % dtheta2 x
sin(alphal) x sin(alpha3) * sin(thetal) — cos(theta) * dtheta
sin(alphal) % sin(alpha3) * sin(theta3))) + cos(thetaS5) % dthetaS *

(cos(thetad) * (cos(theta3) * sin(alphal) x* sin(theta2) + (cos(alpha)
cos(theta2) x sin(alphal) + cos(alphal) * sin(alpha2)) = sin(theta3)) +
(cos(alpha3) % cos(theta3) x (cos(alpha2) * cos(theta2) % sin(alphal) +
cos(alphal) * sin(alpha2)) + (cos(alphal) * cos(alpha) — cos(thetal) *
sin(alphal) x sin(alpha2)) sin(alpha3) — cos(alpha3) = sin(alphal) *
sin(theta2) * sin(theta3)) * sin(theta4)) + dthetad * (—(cos(alpha3) *
(cos(alphal) = cos(alpha) — cos(theta2) * sin(alphal) % sin(alpha2))) +
cos(theta3) x (cos(alpha2) = cos(theta2) * sin(alphal) + cos(alphal) %
sin(alpha2)) = sin(alpha3) — sin(alphal) * sin(alpha3) * sin(thetal) x
sin(theta3)) * sin(theta5) + (cos(thetad) * dtheta4 * (cos(alpha3) =
cos(theta3) x (cos(alpha2) % cos(thetal) * sin(alphal) + cos(alphal) *
sin(alpha2)) + (cos(alphal) % cos(alpha2) — cos(theta) = sin(alphal) *
sin(alpha2)) = sin(alpha3) — cos(alpha3) * sin(alphal) * sin(theta2)
sin(theta3)) + cos(thetad) * (cos(thetal) x cos(theta3) = dtheta2
sin(alphal) — cos(alpha2) * dtheta2 sin(alphal) = sin(thetal)
sin(theta3)) + (—(cos(alpha2) * cos(alpha3) * cos(theta3) x dthetal
sin(alphal) x sin(theta2)) + drheta2 x sin(alphal) % sin(alpha?2)
sin(alpha3) * sin(thetal) — cos(alpha3) % cos(theta?) = dthetal
sin(alphal) * sin(theta3)) * sin(thetad) — dtheta4 % (cos(theta3)
sin(alphal) * sin(theta2) + (cos(alphal) * cos(theta) = sin(alphal) +
cos(alphal) x sin(alpha2)) % sin(theta3)) * sin(thetad)) * sin(theta5);

¥ K X K K K ¥

References

1. Spong, M. and Vidyasagar, W. M.: Robot Dynamics and Control, Wiley, 1989.

2. Ho, C. Y. and Sriwattanathamma, J.: Robot Kinematics, Svmbolic Automation and Numerical
Synthesis, Ablex Publishing Corporation.

3. Corke, P. L: Robotics Toolkit, CSIRO, Division of Manufacturing Technology, February 1994,

4. Sobh, T. M., Dekhil, M., Henderson, T. C. and Sabbavarapu, A.: Prototyping a three-link robot
manipulator, in: ASME Press Series on Robotics and Manufacturing; Recent Trends in Research
and Applications 6, 1996, pp. 781-786.

A PC-BASED SIMULATOR/CONTROLLER/MONITOR SOFTWARE 377

5. Dekhil, M., Sobh, T. M., Henderson, T. C. and Mecklenburg, R.: UPE: Utah prototyping
environment for robot manipulators, in: J. Intelligent Robotic Systems 17 (1996), 31-60.

6. Dekhil, M., Sobh, T. M. and Henderson, T.: URK: Utah robot kit — A 3-link robot manipulator
prototype, in: Proceedings of the IEEE International Conference on Robotics and Automation,
San Diego, May 1994.

7. Craig, J.: Introduction to Robotics, Addison-Wesley, 1989.

8. Herrera-Bendezu, L. G., Mu, E. and Cain, J. T.: Symbolic computation of robot manipulator
kinematics, in; IEEE Int. Conf. Robotics and Automation, 1988, pp. 1335-1340.

9. Rieseler, H. and Wahl, F. M.: Fast symbolic computation of the inverse kinematics of robots,
in: IEEE Int. Conf. Robotics and Automation, 1990, pp. 462-467.

