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Absiract.  Developing an envimnment that enables optimul and flexible design ol robot
munipulators using reconfigurable links, jomts, actuntors, and sensors is an essenil siep for
efficient robot design and prototyping. Such an enviconment should have the rght "mix"™ of
software and hardware computients for designing the physical parts and the cantrollers, und
for the algorithmie control of the robot modules (Kinematics, inverse Kinematics, dynamics,
rajectory plunning, analog control and digital computer control).  Specifying object-based
communications and catalog mechanisms between the software modiles, comrullers, physical
parts, CAD designs, and actuitor and sensor components 1S a necessary step in the prototypmg
acnvibes,

In this paper, we propose a flexible prototyping environment for robol manipulatars with
the required subsystems and interfuces between the different components of this environment.
This envitonment provides a close tie between the design paramelters of the rubol manipulator
and the design constraints imposed by the reguired tasks and desired behaviors of the robot and
by the different subsystems involved in the design process, The design and ymplementation
of this environment slong with the implementation of some of the subsystems are presented,
and spme examples that demonstrate the functionality of the environment are discussed. This
work was supporied in part by DARPA grant NOOO14-91-J-4123, NSF grunt CDA 9024721,
and a University of Uteh Research Committee grant. All opinions, findings. conclusions o
recommendations expressed in this document are those of the author and do not necessarily
reflect the views of (he sponsoring agencics.
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1. Introduction

Prototyping is an important activity in engineering. Prototype development is
a good fest for checking the viability of a proposed system, Prototypes can
also help in determining system parameters, ranges, or in designing beuer sys-
tems, The interuction between several modules (e.g., S/W, VLSI, CAD, CAM,
Robotics, and Control) illustrates an interdisciplinary prototyping environmen|
that includes radically different types of information, combined in a coordinuted
way.
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Fig | Schemutic view for the rubol prototyping environment,

Our particular focus is in designing and building a robot manipulator. Many
tasks are required, starting with specifying the performance requirements, de-
termining the robot configuration and parameters that are most suitable for the
required tusks, ordering the parts and assembling the robot. developing the nee-
essury software and hardware components (controller, simulator, monitor), and
finally, testing the robot and measuring its performance.

Our goal is 10 build a framework for optimal and flexible design of robot manip-
ulators with software and hardware systems and modules which are independent
of the design parameters and which can be used for different configurations and
varying parameters. This environmenl is composed of several subsystems. Some
ol these subsystems are:

— Design.

— Simulation.

—~ Control,

— Monitoring.

Hardware selection.

- CAD/CAM modeling.

= Pan Orderimg.

Physical assembly and testing.

Each subsystem has its own structure, data representation, and reasoning strat-
egy. On the other hand, much of the information is shared among these sub-
systems. To maintain the consistency of the whole system, an interface layer is
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proposed to facilitate the communication between these subsystems, and sel the
protocols that enable the interaction between the subsystems to take place. Figu-
re | shows a schematic view of the prototyping environment with ils subsystems
and the interface,

This environment incorporates a unique constraint compilation and manage-
ment scheme to ensure consistency of design changes across subsystems, and
constitutes a major contribution of this paper.

A prototype 3-link robot manipulator was built to help determine the required
sub-systems and interfaces to build the prototyping environment, and to provide
hands-on experience for the real problems and difficulties that we would like to
address and solve using this environment.

2. Background and Review

To integrate the work among different teams and sites working in such a large
project, there must be some kind of synchronization to facilitate the communi-
caton and cooperation between them. A concurrent engineering infrastructure
that encompasses muluple sites and subsystems, called Palo Alto Collabora-
tive Testbed (PACT), was proposed in [4]. The issues discussed in that work
were;

Cooperative development of interfaces, protocols, and architecture.

Sharing of knowledge among heterogeneous systems.

- Computer-aided suppori for negotiation and decision-making.

An execution environment for helerogeneous systems called “InterBase™ was
proposed in [2]. It integrates preexisting systems over a distributed, autonomous,
and heterogeneous environment via a tool-hased interface. In this environment
each system is associated with a Remate System Interface (RSI) that enables the
transition from the local heterogeneity of each system to a uniform system-level
interface.  Our proposed system differs from this in that it incorporates a set
of robotic design parameters and a set of constraints on these parameters. This
provides a domain=specific knowledge that does not exist in the InterBase system.

Object orientation and its applications to integrate helerogeneous, autonomous,
and distributed systems are discussed in [21]. The argument in this work is that
object-oriented distributed computing is a natural step forward from the client-
server systems of today. An automated, flexible and intelligent manufacturing
based on object-oriented design and analysis techniques is discussed in [18], and
a system for design, process planning and inspection is presented. We have used
the same concept of object-oriented distnibuted design, but we have improved on
this in UPE by adding the domain-specific constraints compiler as an essential
component of the system which provides a convenient mean for providing and
modifying the required design constraints.

Several important themes in concurrent software engineering are examined
in [8]. Some of these themes are:
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Thols: Specific tools that support concurrent software engineering.

Concepts: Tool-independent concepts are required (o support concurrent soft-
wale engineering.

Lifee eycle: Increase the concurrency of the various phases in the software life
cycle.

Integration: Combining concepts #nd tools to form an integrated software engi-
neering lask.
Sharing: Defining multiple levels of shuring is necessary.

A management system for the generation and control of documentation flow
throughout a whole manufacturing process is presented in [9]. The method of
quality assurance is used (o develop this system that covers cooperative work
between different departments for documentation manipulation.

A computer-based architecture program called the Distributed and Integrated
Environment for Computer-Aided Engineering (Dice), which addresses the coor-
dination and communication problems in engineering, was developed at the MIT
Intelligent Engineering Systems Laboratory [24]. The Dice project addresses
several research issues such as, frameworks, representation, organization, de-
sign methods, visualization techniques, interfaces, and communication protocols.
This is very similar to our project except for fact that UPE introduces a closer
tie between the design parameters and the design constrainis. The design con-
straints in our system are generated based on the required tasks and the desired
behavior of the robot. These constraints are supplied either by a human ex-
pert, or by an expert system for optimal selection of robol parameters such as
TOCARD [25]. Such systems can be integrated into the environment to support
this task. Another difference is that in UPE there are two type of construints;
global constraints maintained by the central interface, and specific constraints
maintained by each individual subsystem. This approach allows replacing any
of the subsystems without modifying the global design constraints,

Some important topics in software engineering, such as the lifetime of a soft-
ware system, analysis and design, module interfaces and implementation, and
system testing and verification, can be found in [16]. Also. a report about inte-
grated tools for product, and process design can be found in [26].

In the environment we are proposing for the design and prototyping of robot
systems involving sensing and actuation, several subsystems communicate
through u central interface layer (CI), und cach subsystem has a subsystem in-
terface (SS1) responsible for data transformation between the subsystem and the
CL The flexibility of this design anses from the following points:

~ Adding new subsystem can be achieved by writing an SSI for the new

subsystem, adding it to the list of the subsystems in the CI. There are no
changes required to the other SSIs.

~ Removing a subsystem only requires removing its name from the subsystems -

list n the CL
Any changes in one of the subsystems require changing the corresponding
SST to maintain correct data transformation to and from this subsystem.
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3. Building a Three-link Robot

To explore the basis of building a flexible environment for robot manipulators,
A three-link robot manipulator, “URK" (Utah Robot Kit), was designed. This
enabled us determine the required subsystems and interfaces for such an envi-
ronment. This prototype robot will be used as an educational tool in control and
robotics classes.

This robot prototype can be easily connected to any workstation or PC through
the standard serial port with an RS232 cable. Also, a controller for this robot
was developed with an interface that enables the study of the manipulator’s
behavior for different design parameters and configurations. The manipulator

Fig. 2. The physical three-link robot manipulator,
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Fig. 3. Controlling the robot using different schemes.
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was designed in such a way that enables the change of any of its sensors or
actuators with minimal effort.

Figure 2 shows the physical three-link robot, and Figure 3 shows an overall
view of the different interfaces and platforms that can control the robot. More
details about this design can be found in [6, 23]

4. The Prototyping Environment

The proposed environment consists of several subsystems each of which carry
out certain tasks to build the prototype roboi. These subsystems share many
parameters and information. To maintain the integrity and consistency of the
whole system, a central interfuce (CI) is proposed with the required rules and
protocols for passing information. This interface is the layer between the robot
prototype and the subsystems, and it also serves as a communication channel
between the different subsystems.

The difficulty of building such an interface arises from the fact that it deals
with different systems, each with its own architecture, knowledge base, and
reasoning mechanisms. In order to make these systems cooperate to maintain
the consistency of the whole system, we have to understand the nature of the
reasoning strategy for each subsystem, and the best way of transforming the
information to and from each of them.

In this environment the human role should be specified and a decision should
be taken about which systems can be fully automated and which should be
interactive with the user.

4.1. OVERALL DESIGN

The Utah Prototyping Environment (UPE) consists of a central interface (CI)
and subsystem interfaces (SS1). The tasks of the central interface are to:

— Maintain a global database of all the information needed for the design
IlTl“ICDSS.

— Communicate with the subsystems to update any changes in the sysiem,
This requires the central interface to know which subsystems need (o know
these changes and send messages to these subsystems informing them of the
required changes.

Receive messages and reports from the subsystems when any changes are
required, or when any action has been taken (e.g., update complete).

— Transfer data between the subsystems upon request.

- Check constraints and apply some of the update rules.

Maintain a design history containing the changes and actions that have been
taken during cach design process with date and time stamps.

— Deliver reports to the user with the current status and any changes in the
system.
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Fig. 4.  Overall design of the prototyping environment

The subsystem interfaces are the interface layers between the CI and the sub-
systems. This makes the design more flexible and enables us to change any of
the subsystems without much change in the Cl — only the corresponding SSI
need to be changed. The role of an SSI is:

Report any changes to the CL
Receive messages from the CI with required updates,
Perform the necessary updates in the actual files of the subsystem.

~ Send acknowledgments or error messages to the CL

The assumption is that there is a user at cach subsystem (by a user here we
mean one or more skilled persons who understand this subsystem), and there is 4
user operating the central interface as a general director and coordinator for the
design process. In other words, the Cl is to assist in the coordination of the job
and to help communicate with all subsystems. Figure 4 shows an overall view
of the suggested design.

In the first phase of implementing UPE, the users have more work to do.
The CI and SSIs maintain the information routing between the subsystems by
sending messages (o the corresponding user at each subsystem, then the action
itself (e.g., update a file) is accomplished by the user. Later on, the system will
be automated to perform most of these actions itself and the user will simply be
informed of the actions taken.

|
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4.2. COMMUNICATION PROTOCOLS

The main purpose of this environment is keep all the subsystems informed of
any changes in the design parameters. Therefore, passing information hetween
the subsystems is the most important part of this environment, To be able
to control the information flow, some protocols were developed to enable the
communication between these subsystems in an organized manner. [n our design,
all subsystems communicate through the CI which is responsible for passing the
information to the subsystems that need to know.

Send Ack. to

subsystems Ack,

Teported

Constraints Ok

Constraints not

Satisfied

¥ Negative Ack,
bac

Fig. 5. Finite state machine representation for the change protocol.

Dara found
at S§2

Request from S§1 1o §52

Data not
found

Report
to 551

lig. 6. Finite state muchine representation for the data request protocol.
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There are two types of events that can occur in this system:

I

Change reported from one of the subsystems.

2. Request for data from one subsystem to another.

Figure 5 shows the protocol used for the first event represented by a finite state

machine (FSM). The states of this FSM are:

.
2.

Figure 6 shows the protocol for the second event. The states in this FSM are:
Is
2.
3;
4

Steady state: Do nothing.

Change has been reported: send lock message to all subsystems. Apply
relations and check constraints. If constraints are satisfied, go (o state 3, If
constraints are not satisfied, report these to sender and go to steady stale.

. Constraints are satisfied: Notify the subsystems with the changes and wail

for acknowledgments.

. Acknowledgments received from all subsystems: Send the final acknowl-
edgment to the subsystems and go to steady state,
. Acknowledgments not Ok: Send a “change-back™ command to the subsys-

tems and go to steady state.

Steady state: Do nothing.
Request for S2 received from S1. Send the request to S2.

Required data found at S2. Send data to S| and go to steady state.
Required data not found at S2. Send report 1o S1 and go to steady state.

The suggested protocol can be described in algorithmic notation as follows;

do while true'

if change reported then
lock messages
apply relations
check conslraints
if constraint satisfied then
report changes to subsystenms
wait for subsystems acknowledogment
if all acknowledgments ok
update database
rapart the new srtatus
else
send a change-back message to subsystems
report failure Lo sender
glge
report nonsatistied constraints to sender
send [inal acknowledgment to subsystems
else If data-request reported then
send request to the appropriate subsystem
1f dara received then
send data to sender
glse
send negabive acknowledgment to sender.
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Fig. 7. Possible scenario Tor (he commumication between the subsystems.

Figure 7 shows a possible scenario when applying this protocol. In this al-
gorthm we assume that all system constraints are located in the CI; however,
any subsystem may reject the proposed values by other subsystems due to some
unmodeled constraints. This can happen either because there are some “new”
constraints that are not reported to the Cl, or because some constraints are (oo
hard to be eusily represented in the constraint format in the CL

4.3, DESIGN CYCLES AND INFINITE LOOPS

One problem that arises in UPE is that in some cases infinite design loops might
oceur due to some conflict between the constraints in different subsystems. For
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example, assume that the design system changed the link length to some value,
say from 3.0 1o 2.0 inches, to satisfy some performance requirements.  This
would alter the link mass as well, say from 1.5 to 1.0 Ihs. According to the mass
change the gear ratio has to change or the motor should be replaced, but if there
is & constraint on the sprocket mdius such that it can be increased, and there is
no other motor with lower rpm, then the mass should be changed again to be
|5 Ibs, which requires the length to be 3.0 inches again. If we let the system
continue, the design system will change the link length again and the loop will
continue.

There are several solutions to this problem. One way is lo make the user part
of this loop so that some of the performance requirements can be changed, or
a solution can be selected even if it does not meet some required criterin. This
requires the user 1o he a skilled person who has the knowledge and experience
in the design process, and also to have the authorily w change and select solu-
tions irrespective of the original requirements. Another solution is to put some
limitations on the subsystem regarding its ability lo change some of the design
parameters. These limitations should guarantee infinite loop prevention in the
system. A third solution is to put all the constraints in the CL This allows the CI
to check the solution and detect any violation to any of the constraints; then it
may ask the user to decide on another solution or to chunge some of the perfor-
mance requirements and run the design subsystem again. The last solution has
the user in the loop as well, bul incorporating all the constraints in the CI reduces
the interprocess communication and speeds up the checking process. This last
solution was chosen in our design.

44, PROTOTYPING IENVIRONMENT DATABASE

A databuse for the system components and the design parameters is necessary
to enuble the Cl to check the constraints, to apply the update rules, to wenufy
the subsystems that should be informed when any change happens in the system,
and 10 maintain a design history and supply the required reports,

This database contains the following:

Robot configuration

Design parameters.

Available platforms.

Design constrainis.

Subsystems information.

Update rules.

General information about the system,

Now the problem is to maintain this database. One solution is to use a database
management system (DBMS) and integrate it in the prototyping environment.
This requires writing an mnterface to transform (he data from and to this DBMS,
and this interface might be quite complicated. The other solution is to wnte

|
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our own DBMS. This sounds difficult, but we can make it very simple since the
amount of data we have is limited and does not need sophisticated mechanisms to
handle it. A relational database model is used in our design, and a user interface
has been implemented to maintain this database. For the current design, by
making a one-to-one correspondence between the classes and the files, reading
and writing a file can be accomplished by adding member functions 1o exch
class, In this case there is no need for a special DBMS and all aperations can
be performed by simple functions,

4.5, DESIGN PARAMETERS

The design parameters are the most important data items in this environment.
The mam purpose of this system is 1o keep truck of these parameters and notify
the subsystems of any chunges that occur to any of these parameters. For the
system to perform this task, it needs to know the following data;

Figure 8 shows a list of the design parameters along with the subsystem that
can change them and the subsystems that should be notified by a change in
any of these paramelers. Notice that some of these parameters are changed by
the Cl, and this change is accomplished using the update rules. In this figure
note that one of the design parameters can be removed from this figure, which is
“display rate”, The removal of this parameter is valid becausc only one subsystem
needs to know about this parameter and it is the same subsystern that can change
il. However, we will keep it for possible future extensions or additions of other
subsystems that might be interested in this parameter.

= A complete list of the design panmeters,

~ Which subsystems should be notified if i certain parameter is changed.

The optimal design subsystem is responsible for selecting most of the design
parameters shown in Figure 8. The role of this subsystem is to assist robol
designers in determining the optimal configuration and parameters given some
task specifications and some of the parameters,

Designing an opimal manipulator is nat yet well defined, and it depends
on the definition and criterion of optimality. There are several techniques and
methodologies to formalize this optimization problem by creating some objec-
tive functions that satisfy certain criteria, and solving these functions with the
existence of some constraints. Some of the criteria that can be used 10 form
objective functions are:

- Manipulability.

Total motor power consumption.
Arm weight.

Total weight of robor.

- Cost.

Workspace.

Juint displacement limit.

I

|

1
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— Maximum joint veloeity and acceleraton.

- Deflection.

~ Natural frequaency,

- Position accuracy

To form the objective functions, we need to find quantitative measures for the
manipulator specification and the performance requirements. In some cases, a
closed form expression is not available. In such cases, the simulation programs
can be used (o determine the required quantitative measure. For example, the
maximum velocity is a function of most of the parameters (link lengths, masses,
friction, motor parameters), but it is not easy to gel a closed form expression for
the velocity as a function of all of these parameters; therefore, the simulation
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program can be used to measure the maximum velocity lor different values of
these parameters.

In addition 10 these quantitative measures, there are some rules and assumptions
thiat can be used (o solve for some of the parameters, and to give guidance doring
the design cycle. Some of the assumptions we made to simplify the problem
are:

— The robot type and the degrees of freedom are given.

— Only revolute and prismatic joints are considered.

The links are uniform with rectangular or cylindrical cross section.

— There is & finite set of materials used to build the robot with known densities.
There is a fimite number of actuators and sensors with known specifications
that can be used in the design,

Some of the rules that can serve as additional constraints are:

- Select the solution with equal link lengths or masses because this will sim-
plify the manufacturing process (i.e,, minimize the cost).

= Choose the Tecdback controls Ky, &y that give critically damped behavior

ky = 2¢/ky).

— Consider a mimimum length for each link to satisfy some assembly and
manufacturing constraints, such as actuator und sensors sizes.

Considerable research efforts has been done in this area. For example, The sue
of kinematic criterion for the design evaluation of manipulators was investigated
in [3, 19, 20, 15]. Another criterion i to achieve optimal dynamic performance;
that is (o select the link lt:ngths .md actuator sizes for minimum time motions
along specified trajectory (17, 22

TOCARD (Total (_nmpmer-Aldf:d Design System of Robot Manipulators) is a
system designed by Takano, Masaki, and Sasaki (23] 1o design both fundamental
structure (degrees of freedom, arm length, etc.). and inner structure (arm size,
motor allocation, motor power, etc),

Any of these techmques and systems can be imcorporated in UPE by writing
an 851 for that system and adding it as a new subsystem.

4.6, DATABASE DESIGN

A simple architecture for the database design is to make a one ta one correspon-
dence between clusses and files; Le., each file represems a class in the object
analysts. For example. the robot file represents the robot class and each of the
robat subclasses has a corresponding file. This design facilitates data transfer
between the files and the system (the memory). On the other hand, this strong
coupling between the database design and the svstem classes violates the databuse
design rule of trying 1o make the design independent of the application; however,
if the object anialysis is done independently of the application intended. then this
coupling 15 not a problem,



UTAH PROTOTYPING ENVIRONMENT

generak-info latforms
name | date|  nstitution platformd |brand | model | max-rate
p————— )
sub-sysiems design- parameters
SS# | name |dute I-—Fﬂanm# name| intemal name | status
§_SS-params reports
= 5S4 | param#| status reph | date|type | from | file name
: [} !
| messages 1 | hsory
E msg# | date | from [type | lock ver # |stantdate (end date | platform#
i mag«lo I_‘ update-rules
é msg# | o | ack |repit ver #| fle name| date | mles-num
'

constraints

—{ver #| name [date | model num ver #| file name| date | constraint-num

links * Joints
ver # | link# lengthlarm density ver #| joint#| friction| type| gear-ratio
motors ] Sensors

ver # | brand | type| rpim

range pnmmcml ver # | brand | lype |range | scale

control

l results

—e= ver # | update rate] Kprop

Kdenv| Kint | Kiwd vor # | date [type

file name

— One 1o one
—se- (€ 10 Many
==== gross relerence

Fig. 9 Datahase design lor the system,
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Now, we need to determine the format to be nsed to represent the database
contents and the relations between the files in this database. Figure 9 shows the
suggested data files that constitute the database for the system, and the data items
in each file. The figure also shows the relations between the files. The single
arrow arcs represent a one-to-one relation, and the double arrow arcs represent
a one-to-many relation.

4.7, CONSTRAINTS AND UPDATE RULES COMPILER

A compiler is provided 1o generate C4++ code for the constraints and the up-
date rules. First, the syntax of the lunguage that is used to describe the con-
stramnts and the update rules is described. Second, the generated code is deter-
mined.

Using a compiler instead of generic on-line evaluator for the constraints and
the update rules has the following advantages:

— All constraints are saved in one text file (likewise the update rules). This
makes the data entry very easy. We can add, update, and delete any constraint
or update rule using any text editor.

- Complicated data structures are not required for evaluation.

The database is very simple. which facilitates maintaining the design his-
tory.

Format changes, or changes in the generated code require only changes to
the compiler, and no changes in the system are required,

On the other hand, it has the following disadvantages:

— The generated code has to be included in the system and the whole system
must be recompiled.

— A compiler needs to be implemented.

Notice that the changes in the constrants or the update rules are not fre-
quent, so recompiling the system is not a big problem. Also, the syntax used
1s very simple; therefore the compiler for this language is not difficult to imple-
ment.

4.8 LANGUAGE SYNTAX

By analyzing the design constraints and the update rules, we constructed a simple
description of the language to be input to the compiler. There are two options in
this design, either to have one compiler for both the constraints and the mles, or
(o build two compilers, one for each. From the analysis ol the constraints and
the rules we found that there are many similarities between them; thus building
one compiler for both is the logical option in this case,

The following is the language definition in Backus Naur Form (BNF):
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<program> ;: <constraint-prog>|<rule-prog:>
<constraint-prog> :: begin-constraints
<constraint-seguence>
end-constraints
<rule-prog> :: begin-rules

<rule-sequences
end-rules
<constraint>; <constraint-sequences |
cconstraint>;
<rule>;<rule-sequence> | <rule>;

<copnstraint- seguence>

as
as

<rule-seguence>

e
e

ceonstralil> :: <exp> <comparison-op> <exp>
<rule> :: <yariable> = <exp>
<Exp» 11 <exp>s<terms |<exp>/<term> | <Lerm>
<term> :: <term>+<factor:>|<term=>-<factor>|
<factor>
<factor> :: <variable>|<constant> | (<exp=)
<variable> :; <alphabet> <alphanum>|<alphabet>
sconstant> :: <int>.<ints|-<int>.<ink>|

-:j_ut>| ~<int>
2int> i <digit> <int>|<digit>
<alphanum: <alphabet> <alphanums> |
<digit> <alphanum> |
<alphabet>|<digit>
<alphabet> 1: a..z|A..2|.
<digit> :: 0..9
<comparison-op> :: = | < | » | <= | >= | <

.

The following is an example of some constraints described using this syntax:

begin-conytraints
linkl length > 1.2
1ink2 length = 1.5 ;
link3_length > 0.4 ;
link2_ length + link3_.length < MAX_TOT.LEN ;
linkl.mass < 1.4 :
link2 mass + linkimass < 4.0 ;
jointl gear.ratio < 5.0 ;

end-constraints

s

Another example shows some update rules using the same syntax:

begin-rules
linkl mass = linkl.lengthelinkl.density+ linkl cross.area ;
linkd mass link2 length+ 1ink2 . density«link2 cross.area ;
linkimass link3.length+link3d densitys link3 cross.area ;
jointl gear ratio = motorl_speed/ linkl max speed ;

end-rules

"
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From these examples it is clear that adding arrays (o this language can reduce
the length of the programs, but given the fact that these constraints and rules
will be entered once at installation time, then adding or changing these rules and
constraints will not be so frequent; thus, we will not complicate the compiler, at
least in the first design phase. Some error detection and recovery modules for
syntax error handling can be added to this compiler later.

49 THE GENERATED CODE

As mentioned before, this compiler generates C++ code which is integrated with
the CI system to check the constraint or apply the update rule. Each variable
in the input to the compiler corresponds to one design parameter. For example,
“link1 _length™ corresponds to the variable in the CI system that represents the
length of link number one in the robot configuration. The code generator uses
a lookup table to find the corresponding variable name, and this table s part of
the C1 database. A simple flat file is used to store this table since the number of
the design parameters 15 small.

The generated code for the constraints is the function “pe.check_constraints”™
that returns true if all constraints are satisfied, else it returns false, and reports
which constraints are not satisfied. For the rules, the code generated is the
function “pe.apply_rules” which calculates all corresponding design variables
according to the given rules, The following examples are the code generated for
the two examples shown in the previous section.

bool

ci:icheck.constraints()

{

bool status[no.of.constraints] ;
int 1 =0 ;

robor .contiguration. link|0] . length
robot .configuration. link([l] . length

status [1++] >
> L}
robot . .confiquration.link[2].length > 0.8 ;
+
<
1

status[i++]
status[i++]
startus[i++]

[

robot,contiguration.link(1]. length
robot . conflguration. link(2] . length
robot . .configuration. link[0] .mass <
robot.configuration.link[l] .mass +
robot .configuration.link[2].masa < 4.0 ;

statuslit+]
status[i++]

W h

status[i] = robot.comfiguration.joint(1l)] .gear ratio < 5.0 ;
constraints.generate.report(status) ; // report Lthe result
return {and.all (status)) :

}

void

ciz:apply rules|()
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{
yobot ,conflguration.link[0] .mass =
robot.configuration. link[0].length e
robot .configuration. link (0] .cress. area »
robot.configuration, link[0] .density ;
rabot .confiqurarion, link[1] .mass =
robot . .configuration.link([l]. langth =«
robot .configuration.link[l].cross_area »
rohot .configurarion.link[1].density ;
robot .configuration. link|2)] .masa =
robot . conficquration.link([2].length =
robot .configuration. link[2] .cross._area «
robot .configuration.link([2].density ;
robot.configquration.joint[0] .gear_ratio =
robot .mocor|{(] .speed /
robot . vonfiguration. joint (0] .max_speed ;

In the first example, the function generate report reports the results of checking
the constraints; if all constraints are satisfied it reports that, otherwise, it will
generate a list of the unsatsfied constraints. The function and all retums the
result of ANDing the elements in the array status.

In the second example, some of the design parameters are calculated given the
values of some other purameters. The compiler should not allow the change of
any parameter that should not be changed by the CI system. This can be detected
using the alter_flag in the design parameters table.

To update the constraints or the update rules the file containing the old defi-
nition will be displayed and the user can add, delete, or update any of the old
definitions. Then the new file will be compiled and integrated with the system.

5, Implementation

We have implemented this framework in order to prototype robotic systems. The
subsystems include a CAD design system (Alpha_1 [10]), a robotic part-ordening
system, a robot sunulation package [5], and a robot contral and monitoring
system [7]. Figure 10 shows the graphical user interface used (o control and
monitor the three-link robot manipulator which was built as part of this project.

In the following subsections some implementation issues are investigated, and
the different components in our design and how we implemented each of them
are described.

5.1. THE CENTRAL INTERFACE

The central-iterface (CI) is the core program that handles the communication
between the subsystems, and maintaing a global database for the current design
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and a history ol previous designs. There are several types of messages used in
the commumication. Table 1 shows the different types of messages with a briel
description and the direction of each.

The CI is the implementation of the communication protocals described in See-
tion 4.2, with some enhancements. For example, when the Cl receives n change
message from an SSI, it directly sends lock messages to the other subsystems

Table I Message types used i the communication protocols

Type Description Direction

Change Data change reported 581 — QI
ConstNoL.Ok  Construints not satisfied CI —: §8I
Notify Send changes (o subsystems 1 — S5
Ack lPosibve acknowledgment 551 — (1
Neg Ack. Negative acknowledgment S8I — 1
Back ("hunge hack Cl — §51
Stendy Finnl acknowledgment Cl — 551
Request Regquest tor dati 1 «— S5
Found Data found Cl +—+ SSI
NotFound Data not founi 1 +— SSI
Lok lock muessages Cl — 831
SSLSun SS1 is activated 881 — CI
SSLStwp SS1is fermimuted 581 —

ferminale Terminate the Cl UPE control — Cl
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50 that no more changes can be sent from any SSI until they receive a steady
message. This solves the concurrency problem of more than one system sending
changes to the CI at the same time. The first message received by the CI will be
handled and the others will be ignored. If an SSI receives a lock message after
it sent a change message, that means its message was ignored. Another feature
added 1o the C1 15 the ability to detect if an SSI is working or not by tracing the
S81 Start and 551 _Stop messages.

The CI is managing a number of data files that contain informition about
the robot configuration, platforms, reports, design history, subsystems, and some
general information about the project. The basic file operation was implemented
by defining a file cluss, and by adding some member functions to each class in
the system that performs the required file management nperations.

52 THE P CONTROL SYSTEM

The CI us described above hus no user interface. To be able 1o control and
manage the coordination between the subsystems, the PE control system (PECS)
was implemented with some functionalities that enable the user o have some
control over the C1.

The PECS is on top of the simple DBMS and a simple compiler for the update
miles and the constraints. The user specifies the constraints and/or the update
mules using a certain format (a language), then the compiler transforms this to
C code that will be integrated with the system for constraint checking, and for
applying the update rules. The compiler consists of two parts, a parser and a
code generator, In the first phase the complexity of the compiler was reduced by
making the user language less sophisticated. Later on this can be easily replaced
by # more complicated compiler with un easicr interface and more sophisticated
error checking and optimization capabilities. Figure 11 shows the user interfuce
fur the PECS.

The PECS flunctions include:

Queries: these are simple reports about the current robot configuration, pre-
vious configuration, general information about the system, the plat-
forms, and the subsystems of the prototyping environment. Figu-
re 12 shows a query for the current robol configuration.

Actions: these are the actual operations that control the CL These actions
include updating the constraints and the update rules, compiling the
C1 after including the new constrints and update rules, activating,
and terminuting the CIL,

Reports: \hese are operations to manage the reports in the system, and to send
and receive reports 1o and from the subsystems. The report can be
text, graph, figure, postscript, or data file. Each report is saved with
its type, date, sender, and the file that contains the report contents,
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5.3. INITIAL IMPLEMENTATION OF THIE 5818

In the first phase of implementation, the SSIs serve as a simple interface layer
between the Cl and the user at each subsystem. They receive messages from
the C1 and display them to the user who takes any necessary actions. They also
report any changes to the CI, and this is done by sending a message to the CI
with the changes. Figure 13 shows the user interface for one of the SSls.

In the next implementation phase, some of the actions will be automated and
the user at each subsystem will be notificd with any action taken. For example,
updating a data file that is used by the subsystem can be automatically done by
the SSI. given that 1t has the necessary information about the file format and the
location of the changed data.

54, THE CENTRAL INTERFACE MONITOR

The central interface monitor (CIM) enables the user to monitor the actions and
the messages passing between the Cland the SSIs with a graphical interface. This
interface shows the CIin the middle and the SSIs ax small boxes surrounding the
CI The CIM also has a small text window at near the bottom. This text window
describes the current action (see Figure 14). The messages are represented by
an wrrow from the sender to the receiver. Some results of testing the CI and the
SSls are presented in Section 6 with sequences of the CIM window showing the
activities that took place in cach experiment

Qetimal Jresign,

Optimal Design Subsystem Interface
Requests Changes Reports

Ha et

!
L
il

oo fidle — Waiting for event .. .

.r—-—-ﬁ‘.

|

Fig. 13.  The user interface tor the SSL
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Central Interface Monllor

s Ml ~ g o st ..

o |

Fig. 14,  The graphical mterfoce for the monitor system.

f. Resulis

In this section, we will show several test cases [or the prototyping environment,
In the first test (Figure 15). the optimal design subsystem sent a data-change
message 10 the CL The CIn um sent lock messages to all other subsystems
notifying them that no changes will be accepted until they receive a final ac-
knowledgment message. Then, the Cl applied the relations and checked the
design constraints. In this fest case the constraints were satsfied, so the CI sent
these changes to the subsystemns that needed to be notified. After that, the CI
waited for acknowledgments from the subsystems. In this case it recetved pos-
itive acknowledgments from the specilied subsystems. Finally. the CT updated
the database and sent final acknowledgment messages to all subsysiems.

The second test case (Figure 16), was the same as the first case except that one
of the subsysiems (the CAD/CAM subsystem) rejected the changes by sending
a negative acknowledgment message to the CIL Thus, the CI sent a change-
buck message to the specified subsystems and then sent a final acknowledgment
message to all subsystems. No changes in the database wok place i this case.
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In the last test case (Figure 17), the design constraints were not satisficd.
Therefore, the CI sent a report about the nonsatisficd constraints to the sender
(the optimal design subsystem). Then it sent finul acknowledgment messages 1o
all subsystems. Again, in this case, no changes in the database ok place.

7. Conclusions and Future Work

The design basis for building « prototyping environment for robot manipulators
was investigated and the design options were explained. An initial implemen-
tion of a centrul interface and some of the subsystem imerfaces was done
1o demonstrute the functionality of the proposed environment. This framewaork
facilitates and speeds the design process of robots.

The following are some possible extensions and enhancements to the current
design,

Complete implementation for (he central interface with more functionality
and a user friendly inferface.

- Use 4 database query language to enable generating more sophisticated
gueries and to enhance the report generating capabilities.

- Implement some of the subsystems with their SSIs and increase the automa-
tion in these interfaces.

— Extend this environment to deal with generic #-link robots by using auto-
matic generation of the kinematics and dynamics equations. Also this will
require a robot desoription language to specify the robot configuration and
paramelers.

We have done a lot of work on robot behavior specification and analysis [1, 5,
11-13]. One opportunity to tremendously increase the scope of the prototyping
system we would like to explore is the use of a behavior analysis subsystem as
part of the design feedback in order to constrain the system. Thus, a complete
system can be tested in a simulated environment and the results used to modify
the design.

Another area of interest is the use of information from the manufacturing side
of the prototyping endeavor. Oftentimes changes are mude to expedite the pro-
duction of the system (e.g., mechanical parts are modified to make machining
casier). We have done a good bit of work on reverse engineering of mechanical
parts [14], and believe that is will be useful (o feedback to UPE detuils concern-
ing such changes. Their impact can be determined by propagating the results to
all the other subsystems,
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