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Abstract. In this work we establish o framework for the general problem of observition,
which may be upplicd (o different kinds of visual tasks, We construct 'intelligent” high
leve] control mechanisms tor active visual recognition of different processes within a hybnd
dynamic system, We addresy the prublem of observing o manipulation process in order w
tlustnite the wens and motive behind our framework.  We use a discrete event dynamic
system as o high-level structunng fechnigue (o model the manipulation system. The formu-
faton utilizes the knowledge about the system and the different actions in order to solve
the observer problem in an efficient. stable and practical manner The model uses different
tracking mechanisms so that the observer can “see” the workspace of the manipulating robot.
An amtomiton is developed for the hand/object interaction over time and o stabilizing ob-
server is constructed. Low-level maodules are developed for recogmizing the visual ‘events’
that canses sate vunstions within the dynamic mampulation system in real time. A coarse
quantization of the manipulation actions is used in order to attain an active, aduptive and goul-
direcied sensing mechanism. The formulation provides high-level symbaolic interpretations of
the scene under observation, The discrete event framework is augmented with mechanmsms
for recoveting the continuous purametrie evolution of the scene under observation and Tor
psserting the state of the manipulation agent. This work examines closely the possibilities for
ervors, mistakes and unceramues m the mampulation sysiem, observer construghion process
and event identification meclunnsms. We identify and suggest techniques for modeling these
uncerininbies. Ambiguities are allowed to develop and are resolved after finite time. Error
recovery mechanisms are also devised, The compuled uncertaintics are utilized for nayigat-
ing the ohserver aulomuton state space, asserting state transitions and developing a snitahle
trucking mechanism
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1. Introduction

Visual observers are the class of agents whose primary function is to provide
visual information about the behaviour of the different elements in the scene
under observation. There could be many components of such a dynamic scene
that evolves over fime.  Environments under observation could include both
dynamic and static ngents, whether human or robotic.  The definition of an
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environment could also include some properties of the different objects and/or
ngents in the scene and how they behave.

The kind of information that the visual observer is supposed to provide differs
according to the nature of the environment, the structure and capabilities of
the different agents in the scene and the set of tasks (il any) that in under
consideration. The observer, ideally, should utilize all the pre-existing knowledge
about the environment, agents and the tasks, in addition to the required kind of
data it is expected to deliver and its own capabilities, be it in terms of processing
capabilities, maneuvers and/or sensing mechanisms in order (o achieve a robust
and reliable observation mechanism.

The structure and behaviour of visual observers differs wildly from any given
domain to another. Clearly, an observer for a manufacturing environment would
be different from an observer for appreciating art or finding some material prop-
erties. The difference would exhibit itself in the both the kind of informaution
that the observer 15 supposed to sense and reason about, possibly given some a
priori knowledge, and in the kind of information that it is supposed to provide.
The difference manifests itself in the processing capabilities and requirements
of observers. For autonomous robotic observers, the difference would be in the
kind of visual sensors, software and hardware to process the input sensory data,
also in the mechanical capabilities of the robotic observer and in the decision
making modules.

In this section, we formalize the problem statement and provide some back-
ground. We also define some requirements and justifications and outline our
methodology for solving the problem. We then discuss the outline for the paper.

1.1. FROBLEM STATEMENT

The problem statement can be summarized by declaring that there is a need
for an “intelligent observer’. In particular, we need an observer that is able to
determine the current state of the scene under observation. We are interested
in an autonomous robotic observer. The observer should be able to utilize a
priori information about the observation domain. The observer should also be
an active one that is able to alter the parameters of its sensory apparatus in order
lo determine the evolution of the environment robustly [3, 8].

The intelligent observer should be able to recognize the visual tasks, understand
the meaning of the scene evolution and successfully reports on the current visuil
state. It 1s obvious that there is a need for high-level interpretation of actions
within the environment. The observer should be able to relocate itsell adaptively
in order to be in a better viewing position. It is important to have guarantees
for observability and stability within the viewing mechanism, The framework
should be a predictable one. The framewark (o be used should deliver under
uncertainty and be able to recover from errors. In fact, we would like to construct
an observer that actually wrilizes uncertainties w assen visual states of the system,
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We concentrate on the problem ol observing a manipulation process in order to
tlustrate the ideas and motive behind our framework. The manipulation observer
should recognize and report on different aspects of the tasks under observation
actively and adaptively. We suggest that the framework we develop could be
utilized for other kinds of visual observation domains.

1.2, REQUIREMENTS AND BACKGROUND

The problem of visually observing a moving agent was addressed in the literature.
It was discussed in the work addressing tracking of targets and determination of
the optic flow |4, 16, 20, 29, 46, 52|, recovering 3D parameters of different kinds
of surfaces [6, 13, 39, 40, 62, 80, 85, 87, 88, recently in the work addressing
the determination and decoupling of visual shape and moton parameters [81, 83,
84] and also in the context of other problems [9, 27, 42, 47, 78].

Recovering the visual parameters of a scene under observation and using them
o develop methods for tracking moving agents within a dynamic scene was dis-
cussed [21, 29, 41, 42, 39, 96]. Ilowever, the need to recognize, understand
and report on different visual steps within o dynamic task was not sufficiently
addressed. In particular, there is a need for high-level symbolic interpretations of
the actions of an agent that attaches meaning 1o the 3D world events, as opposed
10 simple recovery of 3D parameters and the consequent tracking movements to
compensate their variation over time. Thus, we need some kind of an intelligent
observer to understand the actions of a dynamic agent. A number of frameworks
for defining dynamic systems have been developed during the past few years.
The work in [15, 35, 36, 64] addresses a variety of dynamic systems within the
genemal hybnd system domain. The work in [19, 23, 43, 44, 61, 67, 70, 82,
94| addresses the problem within the discrete event paradigm. Other work in
different contexts and general domains have been done too [12, 25, 26, 28, 48,
49, 55, 58). Addressing the problem in the context of visual observation have
not been studied. We feel that it is crucial to utilize, augment and fully develop
a framework for a real-life and possibly real-time problem like visual observa-
tion. Attacking such a problem will help in identifying current deficiencies and
requirements in terms of uncertamties, formulation, hardware and software.

We try 1o capture the scientific essence of understanding the process of ob-
servation. We hope to motivate the use of our framework for general modeling
purposes for different complex hybrid dynamic systems. In this work we es-
tablish a framework for the general problem of observation, recognition and
understanding of dynamic visual systems, which may be applied 10 different
Kinds of visual tasks, We establish ‘intelligent” high-level control mechanisms
~ for the observer in order to achieve an efficient approach to visually recognizing
different processes within a dynamic system. Thus, we develop an observer to
satisty some general requirements as follows:

» Recognize visual tasks and events.
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e Reposition itself “intelligently’,

& Operate in real time.

o Assert and report on distinet and discrete visual states,

o Utilize the conrinwous parametric evolution of the visual system.
& Accommaodate visual uncertainties.

The process of observing a robot hand manipulating an object is very crucial
for many robotic and manufacturing tasks. It is important to know in an auto-
mated manufacturing environment whether the robot hand is doing the correct
sequence of operations on an object (or more than one objeet), with the hope of
fully or semi-automated correction of such actions. It might be a fact that the
workspace of the robotic manipulator cannot be accessed by humans, as in the
case of some space applications or some areas within a nuclear plant. In that
case, having another rabot *look” at the process is a very good option. Thus, the
observation process can be thought of as a stage in a closed-loop fully or semi-
automated system where there are robots who perform the required manipulation
task and some other robots who ohserve them and correct their actions when
something goes wrong. Typical manipulation processes include grasping, push-
ing, pulling, lifting, squeezing, screwing and unscrewing, Visnal information
from the abserving robots can be the only kind of feedback, or it can be supple-
mented by other kinds. like tactile sensing. In this work, we address the problem
of observing a single hand manipulating a single object and ‘knowing” whal the
hand is doing, no feedback will be supplied to the manipuluting robot to correct
its actions. Intelligence gathering in partially structured hostile environments 15
another possible use for autonomous intelligent observers.

1.3, RESEARCH GOALS AND METHODOLOGY

The vhjective of this research is 10 design, as discussed before, a predictable
framewark for intelligent observation, recognizing visual tasks and events, that
allows a precise definition of the notion of observability. The observer should
satisfy the requirements that were specified in the previous section. We identity a
framework for the visual system state description and mechanisms for recovering
the continuous scene evolution. Methods to assert the change of visual state are
developed and uncertainty modeling is performed. The suggested system should
use existing knowledge about the scene and tasks. We use a divide-and-conquer
design approach. First we identify a high-level model for the visually observable
discrete manipulation states, then we define low-level action recovery modules.

We use a discrete event dynamic system as a high-level structuring skeleton
to model the visual manipulation system. Our formulation uses the knowledge
about the system and the different actions in order to solve the observer prob-
lem in an efficient, stable and practical way. The model incorporates different
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hand/object relationships and the possible errors in the manipulation actions,
It also uses different racking mechanisms so that the observer can keep track
of the workspace of the manipulating robot. A framework is developed for
the hand/object mteraction over time and a stabilizing observer 1s constructed.
Low-level modules are developed for recognizing the ‘events’ that causes state
transitions within the dynamic manipulation system. The process uses a coarse
quanuzation of the mampulation actions in order to attain un active, adaptive and
goal-directed sensing mechanism.

To be uble to abserve how a hand manipulates an object, we must be able
to identify how the hand moves and how the hand/object physical relationship
evolves over time. One way of doing this would be to identify the motion
vectors as seen be the observer In other words, identify the two-dimensional
vectors in the observer's camera plane and use these as a cue o know how the
ohjects under consideration moves in the three-dimensional space. The problems
of recovering the image flow vectors (the two-dimensional motion vectors in
the camera plane), and idemtifying the scene structure and motion have been
key problems in computer vision. Many technigques have heen developed for
estimating the image flow [4, 17, 52, 91, 96], and to recover the three-dimensional
world structure/shape and motion |13, 34, 63, 78, 92, 93], Those 1echniques arc
not problem-oriented, they are not restricted to a particular problem domain, as
15 the case with our observer construction problem.,

Trying to use the above techniques directly to solve our observer problem 1s
naive and inefficient. In fact, possibly not feasible to perform in a practical
way using the current technology, as the complexity of the manipulation process
increases, Due to the fact that we probably know a priori some information
about the allowable (or useful) manipulation processes and the geometry of the
robotic hund, posing the problem as a structure (or shape) and motion vision
procedure is a very naive and simplistic way of modeling the observer system. i
should also he noted that the observer will have to be an active one to be able to
interact with the manipulation environment i such a way as to be able to ‘see’
at all times. The idea of an active observer was discussed in the literature [3,
8—10), 75, 76|, and it was shown that an active observer can solve basic vision
problems mn a much more efficient way than a passive one.

The work examines closely the possibilities for errors, mistakes and uncertain-
ties in the visual manipulation system, observer construction process and event
identfication mechanisms. We divide the problem into a number of major levels
tor developing uncertainty models in the observation process. The sensor level
models deals with the problems in mapping 3D features to pixel coordinates and
the errors incurred in that process. We identify these uncertainties and suggest
a framework for modeling them. The next level is the extraction strategy level.
in which we develop models for the possibility of errors in the low-level image
processing modules used for identifying features that are to be used in computing
the 2D evolution of the scene under consideration. In the following level, we
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utilize the geometric and mechanical properties of the hand and/or object 1o reject
unrealistic estimates for 2D movements that might have been obtained from the
first two levels.

After having obtained 2D models for the evolution of the hand/object relation-
ship, we trunsform the 2D uncertainty models into 3D uncertainty models for the
structure and motion of the entire scene. The next level uses the equations that
govern the 2D to 3D relationship to perform the conversion. We then reject the
improbable 3D uncertainty models for motion and structure estimates by using
the existing information about the geometric and mechanical properties of the
moving components in the scene. The highest level is the DEDS formulation
with uncertainties, in which state transitions and event identification is asserted
according to the 3D models of uncertainty that were developed in the previous
levels.

|4, OUTLINE OFF THE PAPER

The remainder of this document is organized as follows. We describe the automa-
ton model of # discrete event dynamic system for some hybrid representations
in the next section and then proceed in Section 3 to formulate the high-level
skeleton framework for modeling the munipulation state space and the observer
construction process. In Section 4 we discuss the low-level event identification
mechanisms i 2D and 3D and nlso tracking strategies as controllable events,
We then develop the uncertainty levels and their different models in Section 5.
The uncertainty models are constructed for the different event descriptions. The
event defimition with uncertainty is utilized in Section G in order to navigate
the observer state space and assert different state transitions. We argue that
our representation 18 a sound approach for modeling hybrid sysiems and discuss
some aspects of our formulation in Section 6. We also discuss a mapping strategy
for the automatic generation of visunl observers. Experimental results and the
description of the hardware and software of the experimental system, which was
used to verify the design, are reported in Section 7. The concluding remarks,
the contribution and applications of this work, and the future research directions
are summarized in Section 8. An appendix discusses a 3D recovery algorithm.

2. Hybrid and Discrete Event Dynamic Systems

Hybrid systems, in which digital and analogue devices and sensors interact over
time, is attracting the attention of researchers [15, 35, 49, 55, 64]. Representa-
tion of states and the physical system condition includes continnous and discrele
numerics, in addition to symbols and logical parameters, Most of the current
vision and robotics problems, as well as problems in other domains, fall within
the description of hybrid systems. There as many issues that need to be resolved,
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among them, definitions for observability, stability and stabilizability, controlla-
bility in general, uncertainty of state transitions and identification of the system.
The general observation problem falls within the hybrid system domain, as there
is a need to report, observe and control distinct and discrete system states. There
is also a need for recognizing continuous 2D and 3D evolution of parameters.
Also, there should be a symbolic description of the current state of the system,
especially in the manipulation domain.

The underlying mathematical representation of complex computer-controlled
systems is still insufficient to create a set of models which accurately captures
the dynamics of the systems over the entire range of system operation. We
remain in 4 situation where we must tradeoll the accuracy of our models with
the manageability of the models. Closed-form solutions of mathematical models
are almost exclusively limited to linear system models. Computer simulation
of nonlinear and discrete-event models provide a means for off-line design of
control systems. Guarantees of system performance are limited to those regions
where the robustness conditions apply. These conditions may not apply during
startup and shutdown or during periods of anomalous operation.

Recently, attempts have been made to model low and high-level system changes
in automated and semi-automatic systems as discrete event dynamic systems
(DEDS). Several attempts to improve the modeling capabilities are focused on
mapping the continuous world into a discrete one. However, repeated results are
available which indicate that large interactive systems evolve into states where
minor events can lead to a catastrophe. Discrete event systems (DES) have
been used in many domains to model and control system state changes within a
process. Some of the domains include: Manufacturing, Robotics, Autonomous
Agent Modeling, Control Theory, Assembly and Planning, Concurrency Con-
trol, Distributed Systems, Hierarchical Control, Highway Traffic Control, Au-
tonomous Observation Under Uncertainty, Operating Systems, Communication
Protocols, Real-Time Systems, Scheduling, and Simulation.

A number of tools and modeling techniques are being used to model and
control discrete event systems in the above domains. Some of the modeling
strategies include: Timed, Untimed and Stochastic Petri Nets and State Automata,
Markovian, Stochastic, and Perturbation Models, State Machines, Hierarchical
State Machines, Hybrid Systems Modeling, Probabilistic Modeling (Uncertainty
Recovery and Representation), Queueing Theory, and Recursive Functions.

We do not intend to give a solution for the problem of defining, monitoring
or controlling such hybrid systems in general. What we intend to present in
this work is a framework that works for the class of hybrid systems encountered
within the robotic observation paradigm. The representation we advocate allows
for the symbolic and numeric, continuous and discrete aspects of the observation
task. We conjecture that the framework could be explored further as a possi-
ble basis for providing solutions [or general hybrid systems representation and
analysis problems.
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We suggest the use of a representation of discrete event dynamic systems,
which is augmented by the use of a conerete definition for the events thal causes
state transitions, within the observation domain. We also use some uncertainty
modeling to achieve robustness and smoothness in asserting state and continuous
evenl varialions over tme.

Dynamic systems are sometimes modeled by finite state automata with par-
tally observable events together with a mechanism for enabling and disabling
a subset of state transitions [19, 61, 67, 68, 70, 90], the reader is referred to
those references for more information about this class of DEDS representation.
We propose that such a DEDS skeleton 1s a suitable high-level framework for
many vision and robotics tasks, in particular, we use the DEDS model as a high-
level structuring technique for a system to observe a robot hand manipulating an
object.

21 WHAT IS A DISCRETE EVENT DYNAMIC SYSTEM?

An example of a high-level DEDS controller for part inspection can be seen in
Figure |. This finite stute machine has some observable events that can be used
1o contral the sequencing of the process. The machine remams in state A until a
part is loaded. When the part is loaded, the machine transitions to state B where
it remains until the part s mspected. If another part is available for inspection,
the machine transitions to state A to load it. Otherwise, state C, the ending state,
is reached. If an interruption occurs, such as a misloaded part or inspection error,
the machine goes to state 1), the error state.

Our approach uses DEDS to drive a semi-autonomous visual sensing module
that s capable of making decisions about the visual state ot the manipulation
process taking place. This module provides both symbolic and parametric de-
scriptions which can be used to observe the process inrelligently and actively.

A DEDS framework is used to model the tasks that the autonomous observer
system executes. This model is used as a high level structuring technique to
preserve and make use of the information we know about the way in which a
manmipulation process should be performed. The state and event description is
associated with different visual cues; for example, appearance of objects, spe-
cific 3D movements and structures, interaction between the robot and objects,
and occlusions. A DEDS observer serves as an intelligent sensing module that
utilizes existing information about the fasks and the environment 10 make in-
formed tracking and correction movements and antonomous decisions regarding
the state of the system.

To be able to determine the current state of the system we need to observe
the sequence of events occurring in the system and make decisions regarding the
state of the automaton. State ambiguities are allowed to oceur, however, they are
required to be resolvable after a bounded interval of events. In a strongly output
stabilizable system, the state of the system is known at bounded intervals and
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Fig. 1. A suuple FSM.

allowable events can be controlled (enabled or disabled) in a way that ensures
return in a bounded interval to one of a desired and known set of states (visual
slates i our case).

One of the objectives 1s to make the system strongly output stabilizable and/or
construct an observer to satisfy specific task-oriented visual requirements. Many
2D visual cues Tor estimating 3D world behavior can be used. Examples include:
image motion. shadows, color and boundary information. The uncertainty in the
sensor acguisition procedure and i the image processing mechanisms should be
laken into consideration o compule the world uncertainty.

The observer framework can be utilized for recognizing error states and se-
guences. This recognition task will be used to report on visually incorrect se-
quences. In particular, if there is a pre-determined observer madel of i particular
manipulation task under observation, then it would be useful to determine if
something goes wrong with the exploration actions, The goal of this report-
ing procedure 15 to alert the operator or autonomously supply feedback to the
manipulating robot so that it can correct its actions.

22 DEDS FOR MODELING ORSERVERS

DEDS can be considered as very sutable tools for modeling observers. In
particular. in the manipulation observer domain, there is a need to recognize and
report on distinet and discrete visual states, which might represent manipulation
tasks and/or sub-tasks. The observer should have the ability to state a symbolic
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deseription of the current manipulation agent action. The coarse definition of
DEDS states provide a means for such symbolic state descriptions.

The definition for observers and the observer construction process for discrete
event systems are very coherent with the requirements for an autonomous robotic
observer. The purpose of DEDS observers is to be able to reconstruct the system
state, which 1s exactly the requirements for a visual observer, which needs to
recognize, report and possibly act, depending on the visual manipulation state.
The notions of controllable actions is easily mapped to some fracking and repo-
sitioning procedures that the robotic observer will have to undertake in order to
‘see’ the scene from the ‘best’ viewing position as the agent under observation
moves over time. The actions which the observer robot might need to perform,
depends on the sequence of ‘observable’ events and the reconstructed state path,

Event description in a visual observer is possibly a combination of different
2D and 3D visual data. The visual primitives used in an observer domain could
be mation primitives, matching measures, object identification processes, struc-
ture and shape parameters and/or a number of other visual cues. The problem
with the DEDS skeleton is that it does not allow for smooth state changes under
uncerttainty in recovering the events. We describe in the next sections tech-
niques that make the transition from a DEDS skeleton into a working hybrid
observer for 1 moving manipulation agent. Stability and stabilizability issues are
resolved in the visual observer domain by supplying suitable control sequences
to the observer robot at intermittent points in time in order to ‘guide’ it into the
‘desirable” set of visual states.

3. State Modeling and Observer Construction

Manipulation actions can be modeled efficiently within a discrete event dynamic
system framework. It should be noted that we do not intend to discretize the
workspace of the manipulating robol hand or the movement of the hand, we are
merely using the DEDS model as a high level structuring technique to preserve
and make use of the information we know about the way in which each manipu-
lation task should be performed, in addition to the knowledge about the physical
limitations of both the observer and manipulating robots. The high-level state
definition permits the observer recognize and report on symbolic descriptions of
the task and the physical relationships under observation. We avoid the excessive
use of decision structures and exhaustive searches when observing the 3D world
motion and structure.

A bare-bone approach to solving the observation problem would have been
to try and visually reconstruct the full 3D motion parameters of the robot hand,
which would have more than six degrees of freedom, depending on the number of
fingers and/or claws and how they move. The motion and shape or structure of the
different objects should also be recovered in 3D, which is complicated especially
if some of them are non-rigid bodies. That process should be done in real time
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while the task is being performed. A simple way of tracking might be to try and
keep a fixed geometnic relationship between the observer camera and the hand
over time. However, the above formulation is inefficient, unnecessary and for all
practical purposes infeasible to compute in real time. In addition, that formulation
does not provide any kind of interpretation for the meaning of the scene evolution,
nor does it allow for any symbolic recognition for the task under observation, The
limutation of the observer reachability and the extensive computations required
to perform the visual processing are motives behind formulating the problem as
a hierarchy of task-oriented observation modules that exploits the higher-level
knowledge about the existing system, in order to achieve a feasible mechanism
of keeping the visual process under supervision.

3.1. STATE SPACE MODELING

We do a coarse quantization of the viswal manipulation actions which allows
modeling both continvous and discrete aspects of the manipulation dynamics.
State transitions within the manipulation domain are asserted according to prob-
abilistic models that determine ai different instances of time whether the visual
scene under inspection has changed its state within the discrete event dynamic
system state space. Mapping the desired visual states to a DEDS skeleton is a
stranght forward procedure. We attach a DEDS automation state to each mean-
ingful visual state within a manipulation action, The quantization threshold
depends on the application requirement. In other words, the stale space can be
expanded or contracted depending on the level of accuracy required in reporting
and observing. A surgical operation step, performed by a robotic end effector,
will obviously require an observer that reports (and possibly control the effector
within a closed-loop visual system) with extreme precision. The observer for a
robotic manipulator whose task is to pile up heaps of waste would, most likely,
report in a crude fashion, thus needing a small number of states. The quantization
threshold depends heavily on the nature of the task and the application require-
ments. The DEDS formulation is flexible, in the sense that it allows different
precisions and/or state space models depending on the requirements.

The task of building DEDS automaton skeletons for observer agents can be
performed either manually o awtomatically. In the munual formation case, the
designer would have 1o draw the automaton model that best suits the lask(s)
under observation and depending on the application requirements and implement
the code for the state machine. Automatic construction of the state machine
could be done by having a learning stage in which a mapping module would
form the automaton. This 1s performed before the actual observation process
1s invoked. The idea is to supply the module with sets of possible sequences
in the form of srings of a certain language that the DEDS automaton should
mimmally accept. The language could be either supplied by an operator, in
which case, the resulting automaton performance depends on the relative skill
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ol the operator, or thorugh showing the module a sequence ol visual actions
and labeling those actions appropriately. The language strings should also be
accompanied by a set of wansitional conditions as event descriptions. The module
would then produce the mimumal DEDS automaton, complete with event and state
descriptions that accepts the language. A discussion of the mapping module is
provided in Section 6.

We next discuss building the m.anipulation model for some simple tasks. then
we proceed to develop the observer for these tasks, Formulating the models for
the state transitions, the inter-stite continuous dynamics and recovering uncer-
tainty will be left for Sections 4 und § which deal with the different uncertainty
levels und event dentification mechanisms.

1.2 BUILDING THE MODEL

The ultimate goal of the observation mechanism is to be able 1o know at all
(or most) of the time what is the current manipulution process and what is the
visual relanonship between the hand and the object. The Tact that the observer
will have to mave v order to Keep track of the manipulation process, makes
one think of the stabilizability principle for general DEDS as a model for the
tracking techmques that has 1o be performed by the observer’s camera,

In real-world applications, many manipulation tasks are performed by robots,
ncluding, but not limited to, lifting, pushing, pulling, grasping, squeezing, screw-
ng and unscrewing of machine parts. Modeling all the possible tasks and also
the possible order in which they are to be performed is possible to do within a
DEDS state model. The different hand/object visual relationships for different
tasks can be modeled as the set of states X. Movements of the hand and ob-
ject. either as 2D or 3D motion vectors, and the positions of the hand within
the imuge frame of the observer's camera can be thought of as the events set I
that causes state transitions within the manipulation process. Assuming, [or the
time being. that we have no direct control over the manipulation process itself.
we can define the set of admissible control inputs 7 as the possible (racking
actions that can be performed by the hand holding the camera, which actually
can alter the visual configuration of the manipulation process (with respect to
the observer’s camera). Further, we can define a set of ‘good” siates, where the
visual configuration of the manipulation process enables the camera to keep track
and to know the movements in the system. Thus, it can be seen that the problem
ol observing the robot reduces to the problem ot forming an output stabilizing
observer (an observer that can always return to a sel of ‘good’ visual states) for
the system under consideration.

It should be noted that a DEDS representation for a manipulation task 1s by
no means unique, in fact, the degree of efficiency depends on the designer who
builds the model for the task, testng the optmality of a visual manipulation
models 1§ an issue that remains to be addressed. Automating the process of
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building a model was discussed in the previous sections and will be addressed
in Section 6. As the observer identifics the current state of a manipulation task
in 4 non ambiguous manner, it can then start using a practical and efficient way
to determine the next state within a predefined set, and consequently perform
necessary tracking actions to stabilize the observation process with respect to the
set of good states. That is, the current state of the system tells the observer what
to look for in the next step.

3.2.1. A Grasping Task

We present a simple model for a grasping task. The model is that of a gripper
approaching an object and grasping it. The task domain was chosen for simpli-
fying the idea of building a model for a manipulation task. It is obvious that
more complicated models for grasping or other tasks can be buill. The example
shown here is for illustration purposes.

As shown in Figure 2, the model represents a view of the hand at state 1; with
no object in sight, at state 2; the object starts to appear, at state 3; the object is in
the claws of the gripper and at state 4; the claws of the gripper close on the object.
The view as presented in the figure is a frontal view with respect to the camera
image plane, however, the hand can assume any 3D orientation as so long as the
claws of the gripper are within sight of the ohserver, for example, in the case
of grasping an object resting on a tilted planar surface. This demonstrates the
continuous dynamics aspects of the system. In other words, different oricntations
for the approaching hand are allowable and observable. State changes occur only
when the object appear in sight or when the hand encloses it. The frontal upright

Fig. 2. A model for a grasping 1ask.
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view 15 used to facilitate drawing the automaton only. It should be noted that
these stales can be considered as the set of good states [, since these states
are the expected different visual configurations of a hand and object within a
grasping lask.

States 5 and 6 represent instability in the system as they describe the situation
where the hand is not centered with respect to the camera imaging plane, in other
words, the hand and/or object arc not in a good visual position with respect to
the observer as they tend to escape the camera view, These states are considered
as "bad’ states as the system will go into a non-visual state unless we correct the
viewing position, The set X = {1,2,3,5,6} is the finite set of states, the set
Fo={1,2,3,4} is the sel of ‘good’ states. Some of the events are defined as
motion vectors or motion vector probability distributions, as will be described
later. that causes state transitions and as the appearance of the object into the
viewed scene. The transition from state | 1o state 2 is caused by the appearance
of the object. The transition from stute 2 1o state 3 is caused by the event that the
hand has enclosed the object, while the transition from state 3 to stute 4 is caused
by the inward movement of the gripper claws. The transition from the set {1,2)
to the set {5,6} is caused by movement of the hand as it escapes the camera
view or by the increase in depth between the camera and the viewed scene, thal
is, the hand moving far away from the camera. The self loops are caused by
either the stationarity of the scene with respect to the viewer or by the continuous
movement of the hand as it changes orientation but without tending to escape a
good viewing position of the observer. In the next section we discuss different
techniques to identify the events. ‘The controllable events denoted by *: ' are the
tracking actions required by the hand holding the camera to compensate for the
observed motion. Tracking techniques will later be addressed in detail. All the
events in this automaton are observable and thus the system can be represented
by the triple & = (X, Z,T), where X is the finite set of states, X is the finite set
of possible events and 7" is the set of admissible tracking actions or controllable
events.

It should be mentioned that this model of a grasping task could be extended
to allow for error detection and recoverv. Also search states could be added in
order 1o “look” for the hand i it is no where in sight. The purpose of constructing
the system 15 to develop an observer for the atomaton which will enable the
determination of the current state of the system at intermittent points in time
and further more, enable us to use the sequence of events and control to ‘guide’
the observer into the set of good states F and thus stabilize the observalion
process. Disabling the tracking events will obviously make the system unstable
with respect to the set £'= {1,2,3,4} (can’t get back to it), however, it should
be noted that the subset {3,4} is already stable with respect to I regardless of
the tracking actions, that is, once the system is in state 3 or 4, it will remain
in II. The whole system is stabilizable with respect to £, enabling the tracking
events will cause all the paths from any state to go through £ in a finite number
of transitions and then will visit F infinitely often.
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3.2.2. A Screwing Task

The next model we present is one for a simple screwing task, The task is that
of a grippper serewing an object (a screw nail for example). It is assumed
that the claws of the gripper already encloses the nail and that contact is main-
tained throughout theprocess, the rottion is allowed to be either clockwise or
anticlockwise.

As shown in Figure 3 the model represents a frontal view of the hand at state
I, with the object between the claws, the hand starts to rotate at state 2 and
3 with some view of the claws and the object sull in sight and the claws are
occluded at state 4 which represents a side view of the gripper. This specific
visual representation was chosen because of the fact that (ransitions between
states 1 and 3 and the self loop at 3 cannol be compensated by a tracking action
dve to the physical [imitations of the tracking arm, in other words, the observing
robot might not he able to do 360 degrees rotations around the manipulating
hand, especially if the workspaces of both robots do not intersect and both are
fixed, non-mobile robots.  As mentioned before, the frontal upright view with
respect (o the camera imaging plane in state one was chosen only to facilitate
drawing the automaton, The hand can assume any 3D orientation as so long
as the claws in states 1, 2 and 3 are within sight of the observer, for example,
in the case of screwing a nail into a tilted wall. As shown by our model, the
antomaton tends to keep the frontal view of the hand as long as possible (as far
as the observer robot can rotate), after that the observer will just have to sit idle
until rotation of the hand is truckable ugain, If one define the stable visual siate
as state |, then, obviously, the system cannol be made stable with respect (o that
state, however, one can think of a screwing action on the whole as a stable set,
since the robot hand is always within sight of the observer and it does not tend
i escape the viewing field. In that case the set of ‘good’ states [ is the same
s the set X = {1,2,3,4}, the finite set of states. The goal of the observer in
that case would basically be trying to keep a frontal view as long as it can.

D,

Fig. 3 A model for a screwing lask,
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The event can be defined as rotations that the observer robot can track and
keep a frontal position of the hand, while ¢ is the one that makes the observable
robot reach its “limit” position where it cannot rotate around the hand in the same
direction any longer. The rotations ey are the untrackable rotations, which lie
beyond the reachable workspace of the observable robot. The event ey can be
defined as the event that causes the visual scene to be a side view of the gripper,

3.3, DEVELOPING THE OBSERVER

In order to know the current state of the manipulation process we need to observe
the sequence of events occurring in the system and make decisions regarding the
state of the automaton, state ambiguities are allowed to occur, however, they are
required to be resolvable after a bounded inferval of events. An observer, have o
be constructed according to the visual system for which we developed a DEDS
model. The goal will be to make the system a stabilizable one and/or construct
an observer to satisly specific task-oriented visual requirements that the user may
specify depending on the nature of the process. It should be noticed that events
can be asserted with a specific probability as will be described in the sections 1o
come and thus state transitions can be made according (o pre-specified thresholds
that compliments each state definition. In the case of developing ambiguities
m determuning current and future states, the history of evolution of past event
probabilities can be used to navigate backwards in the observer automaton till
a strong match is perceived, a fail state is reached or the initial ambiguity 15
asserted

As an example, for the model of the grasping task, an observer can be formed
for the system as shown in [igure 4. Tt can be easily seen that the sysiem can
be made stable with respect to the set Ey as discussed in the previous section.

r 1,2,3,4,5.6

e

Fig. 4. An observer tor the grasping system.
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At the beginning, the state of the system is totally ambiguous. however. the
ohserver can be ‘gwmided’ to the set Ey consisting of all the subsets of the good
states & as defined on the visual system model. It can be seen that by enabling
the tracking event from the state (5, 6) to the state (1, 2), all the system can be
made stable with respect to Eyy. The singleton slates represent the instances in
time where the observer will be able 1o determine without ambiguity the current
state of the system.

In the next section we shall claborate on defining the ditterent evenis m the
visual manipulation system and discuss different techniques for event and state
identification, We shall also introduce a framework for computing the uncertainty
in determining the observable visual events in the system and a method by which
the uncertainty distribution in the system can be used to efficiently keep track of
the dilferent observer states and to navigate in the observer automaton.

34, EXAMPLES

Experiments were performed to observe the robot hand. The Lord experimental
gripper is used as the manipulating hand. Different views of the gripper are
shown in Figure 5. Tracking is performed for some features on the gripper in
real time. The visual tracking system works in real time and a position control
vector is supplied to the observer manipulator.

Some visual states for a grasping task usig the Lord gripper, as seen by the
observer camera, is shown in Figure 6. The sequence is delined by our model,
and the visual states correspond to the gripper movement as it approaches an
object an then grasps it

The full system is implemented and lested for some simple visual action se-
quences. One such example is shown in Figure 7. The automaton encodes an
abserver which tracks the hand by keeping a fixed geometric relationship between
the observer’s camera and the hand as so long as the hand does not approach the
observer's camera rapidly. In that case, the observer tends to move sideways,
that is, dodge and start viewing and tracking from sideways. It can be thought
of as an action to avoid collision, due to the fact that the intersection of the
workspaces of both robots 1s not empty, State | represents the visual situation
where the hand is in a centered viewing position with respect to the observer
and viewed from a frontal position. State 2 represents the hand in & noncentered
position and tending to escape the visual view, but not approaching the observer
rapidly. State 3 represents a ‘dangerous’ situation as the hand has approached
the observer rapidly. State 4 represents the hand being viewed from sideways,
and the hand 1s centered within the imaging plane.

After having defined the states, the evenls causing stale transitions can be
easily described. Event ¢ represents no hand movements, event ¢, represents
all hand movements in which the hand does not approach the camera rapidly.
Event e; represents a large movement towards the observer. Events ¢4 and es
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Fig. 5. Different views of the lord gripper.

g, 6. A prusping lusk: As seen by the observer's camera

are controlluble tracking events, where ¢4 always compensates for €3 in order 1o
keep a fixed 3D relationship and es is the ‘dodging” action where the observer
moves o start viewing from sideways, while keeping the hand in a centered
position.

The events can thus be defined precisely as ranges on the recovered world
motion parameters. For example, can be defined as any motion Vz 2= d.. Event
¢y 18 defined as any motion such that

—e, < Vy e A g SWeg AN —6:<Vz<e
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Fig. 7. A model tor a simple visual sequence

It should be noted that defining ¢ in this manner helps a lot in suppressing
noise. Having defined the events, the task reduces to computing the relevant
areas under the distribution curves for the various 3D motion parameters and
computing the probailities for the ranges of e, ¢ and 3 at states | and 4.
State trunsitions is asserted and reported when the probability value exceeds a
presel threshold. States | and 4 are considered to be the set of stable states,
by enabling the tracking events eq and ¢s the system can be made stable with
respect to that set.

The low level visual feature acquisition is performed on the MaxVideo pipelined
video processor at frame rate. The state machine resides on a Sun SparcStation 1.
The Lord gripper is mounted on a PUMA 560 arm and the observer's camera is
mounted on a second PUMA 560.

4. Event Identification and Recovery

In this section we discuss different techniques for caleulating the ‘events’ that
cause state transitions within the DEDS state model. Events are defined to be
internal actions that happen in the system. Some of the evenis are uncontrol-
lable ones that the observer role would be to identify and compute from visual
cues, another set of events are controllable events which are precisely actions
or decisions that the observer agent will have to undertake. The controllable
actions are performed by the observer in order to attain some observability crite-
na pertaining to the task under supervision. Typical controllable actions would
be some tracking or repositioning movements that would place the observer in a
‘better’ viewing positions. The controllable actions shonld be ones that guide the
observer into the set of ‘good’ states as defined by the state space of a particular
lusk. The goal is to be able to stabilize the observer agent DEDS automata.
Uncontrollable events are actual 3D actions that are performed by the manip-
ulating robot. The visual observer role is to recover possible 3D cues from 2D
data that 1s provided by the observer agent camera. Using the formulation in the
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previous section, it can be shown from some exmmples ased in modeling manip-
ulation processes, that uncontrolluble events are mostly primitives like specific
D movements of the manipulating hand and/or events like “there 15 an object
now in view”, “true hand has enclosed the object™ and so on. The events that
are supposed to be identified and recovered at different states of the observer
automaton are highly dependent on the current state in the observation process,
Thus the observer tends to ‘look” for specific actions at different instances of
Iime.

We next discuss techmigues 1o be used in identifying the 3D actions of the
manipulation hand and/or the object, which are events that are always important
o recover in order o enable the observer to navigate in the automaton. The
process is started by identifying the manipulating hand and the object (if it exists)
within the observer's viewing window. We then proceed to develop an algorithm
for detecting two-dimensional motion vectors on the observer's camera plane.
Overall motion estimation and different tracking strategies are then developed in
order to be able to stabilize the observer in the most efficient way,

4.1, IMAGE MOTION

In order 1o be able to wdentify how the manipulating hand is moving within
grasping task, we use the image motion to estimate the hand movement. This
tusk can be accomplished by either feature tracking or by computing the optic
Mow. Feature tracking seems to he a good option for determining the hand
motion, especially since the same hand will probably be used throughout the
manipulation process, and il the system is to be ported to another manufacturing
environment, then the interface that tracks specific features can be changed while
maintaining modularity. On the other hand, determining the full optic How seems
to be essential for computing the object motion, as we might not know in advance
any shape or material information about the objects to be manipulated.

Many techniques were developed to estimate the optic flow (the 2D image mo-
tion vectors) [4, 46, 52], we propose an algorithm for calculating the image flow
and then we discuss a simpler version of the same algorithm for real time detec-
tion of the 2D motion vectors. As a start, we can use a simple two-dimensional
segmentution scheme in order to identify the hand and the manipulated object
within the camera view. All the “objects’ within an image are identified. An
objeet is simply characterized by a region with a space of at least one pixel sur-
rounding it from everywhere (we assume good lightening control and materials
which are easy to identify in this work, as complex visual processing is not the
focus of this project), thus regions with holes can be easily recognized using
this technique. An edge tracer can be used for this purpose. We can make our
decision built on the knowledge we have regarding the geometry of the hand
and/or the object. As mentioned before, specific features can be dentified, for
example: the corners, or we can have a piece of puper with specific features
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Fig. 8. ldennfying the SSD optical flow,

stuck on the hand. Tt should be noticed that the initial visual sensing techniques
used are not sophisticated or novel, the goal is to be able to provide the DEDS
visual observer with reasonuble sense data.

The image flow detection technique we use is based on the sum-of-squared-
differences optic low. We consider two images, | and 2 as shown in Figure 8,
For every pixel (i, ) in image | we consider a pixel area N surrounding it and
search a neighboring area S 1o seek a corresponding area in image 2 such that
the sum of squared differences in the pixel gray levels i1s minimal as follows

SSD(' Y'Y = min_ Z | B+ Ar, y+ Ay) — E'(x" + Az, ' + Ay)] -
Ly vy

The image Mow vector of pixel (x,y) then points from the center of N in the
lirst image (o the center of the best match n the second image. The search
area S should be restricted for practicality measures. In the case of multiple
best matches, we can use the one which implies minimum motion, as a heuristic
favoring small movements. It should be noted that the accuracy of dircction und
mignitude of the optic flow determination depends on the sizes of the neighbor-
hoods NV and S.

There are three basic problems with this simple approach, one is that the sum
of squared differences will be near zero for all directions wherever the graylevel
15 relatively uniform, the second is that it suffers from the so-called "aperture
problem’ even if there is a significant graylevel variation. To illustrate this point,
consider a vertical edge moving o the right by one pixel distance, and suppose
the N window size is 3 x 3 pixels and the § window size 15 5 x 5 pixels, the
squarcd-dilferences at an edge point reaches its maximum for three directions
as indicated by the vectors (in pixel displacements); (1,0),(1,—1) and (1, 1).
Figures 9 and 10 illustrates the aperture problem. The third problem is that the
scheme will only determine the displacement (o pixel accuracy.

We solve the first problem by estimating the motion only at the hand or object
pixels (as determined by the two-dimensional segmentation scheme) where the
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Fig, 9. The aperture problem: The direction of the edge £ cannot be determined by viewing
E through aperture A.
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Fig. 10, Normal flow estimution,

intensity changes significantly. An edge detector is applied to the first image to
estimate the edge magnitude M (2, y) and direction D(x,y) for every pixel:

M(z,y) ~ +/E3 + EZ,

E,
Dix,y) =~ tan ! ( Ey- )

where E, and I, are the partial derivatives of the first image with respect to @
and y, respectively. The edge dircetion and magnitude is discretized depending
on the size of the windows N and S. The motion is then estimated at only the
pixels where the gradient magnitude exceeds the input threshold value. Motion
ambiguity due to the aperture problem can be solved by estimating only the
normal flow vector. It is well known that the motion along the direction of
intensity gradient only can be recovered. Then we evaluate the SSD functions
at only those locations that lic on the gradient directions and choose the one
corresponding to the minimal SSD, if more than one minimal SSD exist we
can choose the one corresponding to the smallest movement, as deseribed above,
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The full flow vector can then be estimated by using the following equation which
relates the normal flow vector o, to the full How vectar 7

Uy = 1 « 7.

This method works under the asumption that the hand image motion is locally
constunt, Solving the over-determined linear system will result in a solution for
the Tull Mow. The least square error of the system can help us to decide whether
the assumption is a reasonably valid one for determining the event that caused
the transition in the DEDS. On the other hand, full flow determination can be
petformed for small clusters of points in the image and a number of full Now
estimates is then used for 3D recovery.

To obtain sub-pixel accuracy, we can fit a one-dimensional curve along the
direction of the gradient for all the SSD values obtamed. A polynomial of the
degree of the number of points used along the gradient can be used to obtain the
best precision. However, for an § window of size 7 x 7 pixels or less and an N
window of size 3 x 3 or so, a quadratic function can be used for efficiency and to
avoid optimizational instabilities for higher order polynomials. Subpixel accuracy
using # guadratic function is shown in Figure 11. The subpixel optimum can be
obtained by finding the minimum of the function used and using the displacement
at which it occurred as the image flow estimate. To avoid probable discontinuities
in the SSD values, the image could be smoothed first using a gaussian with a
small vanance.

A simpler version of the above algorithm can be implemented in real-time
using a multi-resolution approach [96]. We can restrict the window size of N to
3% 3 and that of 8 10 5 = §, and perform the algorithim on different levels of the
panssian image pyramid. A paussian pyramid is constructed applications by the
successive of gaussian low-pass fillering and decimation by half. The pyramid
processor, PVM-1, 15 capable of producing complete gaussian pyramid from a
256 by 256 image in one video frame (1/30 of a second). Maxvideo boards
can be used for the simultaneous estimation of image flow at all the levels of
the pyramud for all the pixels. Image flow of 1 pixel at the second level would

i)
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Fig. 11, Subpix¢l sccuracy lor optical Mow,
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correspond to 2 pixels in the original image, | pixel displacement at the third
level would correspond to 4 pixels in the original image, and so on. The level
with the smallest least square fitting error of the normal How can be chosen to get
the full flow and the motion vector is scaled accordingly. This method is crude in
the sense that it only allow image flow values of 1, 2, 4 or 8 pixel displacement al
gach pixel, but it can be used for detecting fast movements of the hand. By either
using a flow recovery algorithm or a feature idetification and tracking algorithm,
we end up having a set of values for 2D displacements of a number of pixels.
The problem is how can we maodel the uncertainty in those 2D estimates, which
are to be used later for 3D parameter recovery. For example, i the estimate
is - for a specific 3D feature — that pixel (i, y;) has moved to pixel (e, i),
then the problem reduces to finding space probability distributions for the four
indices. The sensor acquisition procedure (grabbing images) and uncertainty in
image processing mechanisms for determining features are factors that should be
taken into consideration when we compute the uncertainty in the optic flow. In
the next section we discuss these problems in details.

42, RECOVERING 3D EVENTS

One can model an arbitrary 3D motion in terms of stationary-scene/moving-
viewer as shown in Figure 12. The optical low at the image plane can be
related to the 3D world as indicated by the following pair of equations for each
point (i, y) n the image plane [63]

1", V‘ )
Uy = {-.;.- R } | [.nyﬂx — (l —I—;r').'fl)-- +'yﬂzl.

bA Z
Vg Vy
"y = {'!,-‘ _; ‘; } + [(I E y"’)Qx — ayQdy — :!:.Qz]

where 1, and v, are the image velocity at image location (x, y), (Vx, Wy, Vz)
and (Qy.€y, Q) are the translational and rotational velocity vectors of the
observer, and Z is the unknown distance from the camera to the object.

Fig. 120 3D formulation for stationary scene moving viewer,
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In this system of equations, the only knowns are the 2D vectors v, and wuy,
if we use the formulation with uncertainty then basically the 2D vectors are
random vanables with a known probability distribution. In case that the real 3D
relationships between feature points (on the hand) are known, then recovering
the absolute depth 15 a simple process, The equations can then be formalized, in
case that the 3D features lie on a planar surface. as follows

Vz Vx 3
ve = (1 —po— r;'.u}(w-' = —) W ‘J’?Jﬂ.x = (1 +27)Qy + .uﬂz].
Zy 2y L
(1 \( e V"') Flor ) Qy 482y
o q' — M '. h . o o . = - - " -~ J.‘ y
1y e —ap\y 5 = & [( " )Sx — xysdy 7 J

where Z,, is the absolute depth, g and ¢ are the planar surface orientations. It
should be noticed that the resulting system of equations is nonlinear, however, il
has some linear properties. The rotational part, for example, is totally linear. In
the next section we discuss different methods for solving the system of equations
and thus recovering the 3D parameters in real time with and without uncertainty
formulation.

A part of the events definition, as mentioned before, is the recognition of
the existence of an object, for example. In other words, identifying ohjects in
the visual scene and not only recovering 3D motion. Orientation of the object
relative to the observer's camera and its shape can always be asserted by a simple
2D segmentation strategy as mentioned in the discussion about computing the
2D mouon vectors, A data base of different shapes and orientations for differemt
sized objects with the associated state that they may be manipulated in may be
used and updated by the system, Correlation-based matching techmques can be
used to compare 2D object representations, while moment computations are used
to scale, shift and re-orient the shapes to be correlated. New objects can sull be
recognized and stored in this data base 10 facilitate future accesses.

A0 THE CONTROLLABLE EVENTS

One kind of control mputs that can be supphed to the observer robot are the
tracking actions. Depending on the nature of the mampulation process, the
observer has to keep track of the hand and object within the camera image plane
m such a way so as to be able to observe the process. The mtelligent tracking
contral is supplied by the DEDS formulation.  Simple-minded tracking ideas.
like keeping fixed 3D relation between the camera and the manipulating agent
are not to be used i our system. The manipulation action might be a simple
one that does not require complex tracking. such as screwing and unscrewing,
however, more complex events, where the hand may occlude the manipulation
process, or when the hand starts moving away from the observer, might suggest
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the need for complex tracking mechanisms, including translations and rotations
of the observing robot hand on which the camera is mounted.

A subset of the three-dimensional motion and structure parameters would have
to bhe calculated using two or more frames |6, 34, 40, 78, 81, ¥3, 88, 93|. The
size of the subset will depend on the expecred kind of 3D motion, as the current
state of the DEDS system will specify. Our system needs to track the object while
using all the six degrees of freedom of the observer robot in order to position
the observer at the best feasible position at different states of the automaton.
Using rotations only to follow the end effector of the manipulating robot is not
sufficient for the stabilizing observer.

Two kinds of tracking mechanisms can be used, in the first kind, the two
images on which the motion estimation algorithms will be used, will be taken
while the camera is stutionary and then the camern will move and the process will
be repeated afier the camera stops. The observer movement will be a ‘jerky’
one.  Another scheme can be used where the camera can grab images while
the robot arm holding it 1s moving, in this case one should compensate for the
moving arm before calculating the mmage flow of the hand and/or object. Thus,
the problem reduces to finding the image flow due to the camera movement
using the stationary-scene/moving-viewer 3D formulation. In the absence of
translations, for example, we can compensate for the rotational purt in a very
fust and efficient way. Compensation will have to be performed before using the
structure and motion recovery algorithms.

Some tracking actions would be performed for avoiding occlusions in order
1o be able to *see’ the workspace of the manipulating robot. Others would he
performed for doing quick visnal searches to locate the hand and/or objects if
they go out of sight. The kind of mechanical control to be supplied ts dependent
on what the observer assert to he the current state in the DEDS automaton.

44, RECOVERING WORLD EVENTS

In this section we discuss different techniques for recovering the 3D events, We
ulilize the refined 2D motion estimates in order to achieve a robust estimation
of the three-dimensional maotion and structure vectors of the scene under ob-
servation.  We develop some techniques for finding esuimates of the required
parameters and discuss mathematical formulations that will enable us to deter-
mine the 3D event distributions.

We concentrate in our treatment of the subject on determining the manipulating
hand paurameters, as the hand configuration 1s well defined. we also continue using
the assumption that the feature poinis lie on a planar surface. As argued before,
the extension to arbitrary configurations 1s straightforward. The object behaviour
cun be asserted using similar techniques and/or hy observing conveniently located
surface patches under similar assumptions. We nse the recovered hand depth from
observing a set of features and make assumptions about the depth of the ohjects
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relative to the hand depth. Using 2D cues about the object location, orientation,
size and configuration (using correlation and moments) and combining them with
3D cues about the hand structure and motion in the world, enable the observer
lo make decisions about the actions being performed on the objects in the scene
under observation.

We start by discussing a deterministic method to recover 3D parameters, then
we describe other approximate methods. The problem of recovering scene struc-
ture and the camera motion relative to the scene has been one of the key problems
in computer vision. Many lechniques have been developed for the estimation
of structure and motion parameters [39, 62, 80, 85, 93]. A lot of existing al-
gorithms depend on evaluating the motion paramelers between two successive
frames in a sequence. However, recent research on structure and motion has
been directed towards using a large number of frames to exploit the history of
parametric evolution for a more accurate estimation and noise reduction [34, 40,
83, 88].

We develop a method for recovering the 3D motion and orientation of the
planar surface (on which lies the hand features) from an evolving image se-
quence. The algorithm utilizes the image flow velocities in order to recover the
3D parameters. First, an algorithm is developed which iteratively improves the
solution given two successive image frames. The solution space is divided into
three subspaces — the translational motion, the rotational motion and the surface
slope. The solution of cach subspace is updated by using the current solution
of the other two subspaces. The updating process continues until the motion
parameters converge, or until no significant improvement is achieved. Second,
we further improve the solution progressively by using a large number of image
frames and the ordinary differential equations which describe the evolution of
motion and strocture over time. Our algorithm uses a weighted average of the
expected parameters and the calculated parameters using the 2-frame iterative
algorithm as current solution and continues in the same way till the end of the
frame sequence. Thus it keeps track of the past history of parametric evolution.
The solution 1s further improved by exploiting the temporal coherence of 3D
motion. We develop the ordinary differential equations which describe the evo-
lution of motion and structure in terms of the current motion/structure and the
measurements (the 2D motion vectors) in the image plane. As an initial step we
assume that the 3D motion is piecewise uniform in time. The extended Kalman
filter can then be used to update the solution of the differential equations. Details
of the algorithm are discussed in Appendix.

There are other non-iterative techniques for recovering the 3D parameters re-
sulting from 2D motion between two frames, The methods that will be mentioned
here rely on specific assumption regarding the hand geometry and/or world ma-
nipulating actions. Assuming that the actual relations between feature points that
lie on the hand plane is well defined than a closed form solution for the structure
parameters and depth can be estimated by using a method like the one described
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by Fischler and Bolles [32]. The motion parumeters can then be easily recovered
by solving a linear system in six parameters.

It should be noticed that we try to use altemative methods in order 10 solve
linear equations at different automaton states, the motive behind that is the fact
that linear systems can be solved in a pseudo-real time framework for a relatively
small number of feature points and in addition a closed form solution always
results, Another idea is to assume that the surface of the manipulating hand is
frontal at the time of capturing the frame to be processed with the previous one,
thus p and 4 arc equal to zero, and the problem reduces to solving a linear system
in six paramelers for the motion parameters, while the depth is easily computed
by knowing the 3D distance hetween any two (eature points, thus Z,, is equal to
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where f s the focal length of the lens, [ is the real 3D distance between two
feature points on the hand and (2, y)) and (23, 92) are the CCD coordinates of
the two image points.

The assumption here being that the observer always locates itself to a position
in which the hand is frontal with respect to the camera image plane, and that
mampulating movements while the camera is moving and during computations
1s negligible. Other formulations may attempt 1o find pseudo-close form solution
of the nonlinear second order system and other assumptions, like the absence of
rotational and/or translational motion reduces the complexity significantly.

5. Uncertainty Modeling and Identification

In this section we discuss uncertainty modeling for the observer framework. In
particular, we describe some technigues for measuring and computing the uncer-
tainties in the event idenufication mechanisms. The purpose of this discussion is
to present the sources of uncertainty in the two-dimensional visual data, which is
the only kind of input that the observer can sense through its camera. Then we
procesed to identify methods by which the 2D uncertainty could be transformed
mto meaningful 3D interpretations that the observer automata can use reliably in
order 1o recover the world events,

Figure 13 depicts the sequence of steps that are 1o be performed in order to
recover the full world uncertainty from 2D measurcments on the image plane.
We start by recognizing the sensor uncertainty, then we recover the uncertainty
resulting from the image processing lechnique that is used. the resulting 2D
uncertainties are then refired and vsed to determine the 3D models. In the
following three sections we discuss this sequence.
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Fige 13 Propagation of uncertainty

5.1 SENSOR AND IMAGE PROCESSING UNCERTAINTIES

In this section we develop and discuss modeling the uncertainties in the recov-
ered 2D displacement vectors, There are many sources of errors and ways to
model uncertainties in image processing and sensing in general [22, 37, 95, 97].
As mentioned when describing techniques for recovering the image flow, the un-
certainty in the recovered values results from sensor uncertainties and noise and
from the image processing techniques used to extract and track features, When
dealing with measurements of any sort, it is always the case that the measure-
ments are accompanted by some error. Mistakes also oceur, where mistakes are
not large errors but failures of a system component or more. A description of
errors, mistakes can be found in [5, 7).

5.1.1. Image Formation Errors

The observer robot uses a cameri 1o grab and register images of the manipulation
system, so we need to know errors in mapping from the 3D world features (o
the 2D domain which we vse in forming 3D hypothesis about the task under
supervision. The accuracy, precision and modeling uncertainty of the camera
as our sensor is an important issue and the first step towards forming a full
uncertainty model for recovering the 3D evenis in the observer automaton,

In Figure 14 (redrawn from [7]), a model of the image formation process is
illustrated, which lists some salient features of each component. As a lot of
the image processing algorithms compute derivatives of the mtensity function,
noise in the image will be amplified and propagated throughout the observation
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process. The goal of this treatment is to find a distribution for the uncertainty
of mapping a specific 3D feature into a specific pixel value. In other words, if
the feature 2D position was discovered to be (4, ), then the goal is 1o find a 2D
distribution for ¢ and j, assumung that there 1s no uncertainty in the technigue
used to extract the 2D feature.

The end product of modeling the sensor uncertainty is 1o be able (o say a
statement like: *“The 3D feature £ 15 located in the 2D pixel position (4, j) with
probability gy or located in the 2D pixel position (¢, j + |) with probability py or
... given that the registered location is (I, m), such that py +po+ -+ p, = L,
and A error in the 2D [eature recovery mechanism.”

The errors in the image formation process are basically of two different kinds.
The first type is a spatial error, the other type is a temporal error. The spatial error
due to the noise characteristics of a CCD transducer can be due to many reasans,
among which are dark signatures and illumination signatures. The technique to
be used is to take a large number of images, we can denote the image intensity
function as a 3D function I, v, f), with spatial arguments u and v and temporal
argument ¢. The saumple mean of the image intensities over N time samples can
be denoted by I(w, )

N
Tu,v) = LNZ Iu, v, 1),

t=1

The spatial variance in a 5 x 5 neighborhood of the means is computed by:

2 2
s (u,v) = z Z (I(u +t, v + ) — I(u, u])z_
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Fig. 14 Image formation,
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The dark signature of the camera can be determined by computing (u, v) of
each pixel with the lens cap on. It will be found that a small number of pixels
will have non-zero mean and non-zero variance. The specific pixel locations are
blemished and should be registered. The uniform illumination is computed by
placing a nylon diffuser over the lens and computing the mean and variance. It
will be noticed that due to digitizing the CCD array into a pixel array of different
size, and the difference in sample rates between the digitizer and camera, the
border of the image will have different mean and variance from the interior of
the imuge. Some “stuck” pixels at the location of the blemished pixels will also
be noted. The contrast transfer function will also be noted to vary ai different
distances from the center of the lens.

Temporal noise characteristics can also be identified by taking a number of
experiments and notice the time dependency of the pixels intensity function,
In onr treatment and for our modeling purposes we concentrate on the spatial
distribution of noise and its effect on finding the 2D uncertainty in recovering u
AD feature location in the pixel array.

5.1.2. Calibration and Modeling Uncertaintiey

Methods to compute the translation and rotation of the camera with respect to
its coordinates, as well as the camera paramelters, such as the focal length, radial
distortion coefficients, scale factor and the image origin, have been developed
and discussed in the literawre (14, 50, 86]. In this section we use a static camera
calibration technique to model the uncertainty in 3D to 2D feature locations. In
particular we use the sequence of steps used to transform from 3D world coor-
dinates to computer pixel coordinates in order to recover the pixel uncertainties,
due to the sensor noise charactenistics described previously.

A sequence of calibration steps i used for o coplanar set of points in order to
obtain the rotation and translation matrices, m addition to the camera parameters.
The input 1o the system are two sets of coordinates, (X, Yy), which are the
computer 2D pixel image coordinates in frame memory and (g, Y, 240), Which
are the 3D world coordinates of a set of coplanar points impressed on a picee of
paper with known inter-point distances. A discussion of the exact mathematical
formulation of the inter-step computations to find all the paramelers can be found
m [14].

Our approach is to treat the whole camera system as a black box and make
mput/outpul measurements and develop a model of its parametric behaviour, The
next step is to utilize the recovered camera parameters and the number of 3D
points which we created in order to formulate a distribution of the 2D uncer-
tainty. The points used in calibration and later in recovering the distribution can
be the actual features on the robot hand that are 10 be tracked and thus provid-
ng a similar experimental environmenl to the one that the observer will operate
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. The strategy used to find the 2D uncertainty in the features 2D representa-
tion 1§ to utilize the recovered camera parameters and the 3D world coordinates
(s Yus ) Of the known set of points and compute the corresponding pixel co-
ordinates, for points distributed throughout the image plane a number of times,
find the actual feature pixel coordinates and construct 2D histograms for the dis-
plucements from the recovered coordinates for the experiments performed. The
number of the experiments giving a certain displacement error would be the 2
axis of this histogram, while the @ and y axis are the displacement error. Differ-
ent histograms can be nsed for different 2D pixel positions distributed throughout
the image plane. The three-dimensional histogrm functions are then normalized
such that the volume under the histogram is equal to | unit volume and the
resulting normalized function is used as the distribution of pixel displacement
error, thus modeling the sensor uncertainty. The black box approach is thus used
to model errors in g statistical sense,

S5.0.3. Image Processing Uncertainties

In this section we describe a technique by which developing uncertamnties due to
the image processing sirategy can be modeled. In addition, we end the discussion
by combining both the sensor uncertainties developed in the previous section
and the models developed i this section to generate distribution models for the
uncertainty in estunating the 2D motion vectors. These models are to be used
for determining the full uncertainty in recovering the 3D events thal causes stale
transitions between states of the observer automaton,

We start by identifying some basic measures and ideas that are used frequently
to recognize the behaviour of basic image processing algorithms and then pro-
ceed 1o describe the 1echnique we use in order 16 compute the error model in
locating certain features From their 2D representation in the pixel array. We con-
centrate on modeling the error incurred in extracting edges, as edge extraction 18
a very popular mechanism that is nused for both identitying feature points on the
manipulating hand and also for computing 2D contours of the object under su-
pervision. When we discussed flow recovery techniques before, it was discussed
in details that the optic flow recovery algorithm using local matching works well
for the mntensity boundaries and not for the inside regions.

Edge extraction strategies und methods to evaluate their performance qualita-
tively and quantatively have been presented and discussed in the literature |1,

Fig. 15. Different types ol edges.
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31, 33, 38, 53, 56, 69]. There are many types of edges, ideal, ramp and noisy
edges as shown in Figure 15 are only three of them. Different curvatures in the
edges also constitute another dimension to be taken into consideration when i
comes 1o asserting the types of edges that exist.

The goal of developing the error models for edge extraction to be able to say a
statement like: “Given that the 2D feature recovered using the edge recovery S is
in pixel position (z, ), then there is a probability that the feature was originally
at pixel position (x -+ 1.y) with probability py or ... ete. due to the noise in
the pixel image, such that py + ps + -+ + p, = 1. The problem is to find the
probabilities,

It should be obvious that there may be different types of noises and also differ-
ent levels of those types that might vary at different locations in the sensor image
plane. This adds 1o the different models that we might have to construct, Our
upproach is to use ideal, that is, synthesized edges of different types, locations
and also orientations in image frames then corrupt them with different kinds and
levels of noises. We know the ideal edge ponts from the ideal image, for which
we shall use the edge detector that is to be used in the observer experiment. The
corrupted images will then be operated upon by the detector and the edge points
located. The edge points will differ from the wdeal image edge points. The prob-
lem reduces to finding corresponding edge points in corrupted and ideal images
then finding the error along a large number of edge points. A 2D histogram is
then constructed for the number of points with specific displacement errors from
the ideal point. The volume of the histogram is then normalized 1o be equal (o
I, the resulting 3D function 1s the 2D probability density function of the error
of displacements.

In Figure 16, an ideal box is drawn, then corrupted with an additive gaussian
noise with o equal o 3, 10, 20, 30 and 40 respectively and then the edges
computed as shown. In the box there are four different kinds of ideal edges
(different orientations with the object inside or outside of the background). The
correspondence between edge points in the corrupted and ideal is established by
choosing the paint with the minimal distance from the ideal edge point, such that
it does not correspond to another ideal edge point. The histogram is constructed
for each edge and then normalized. For practicality measures, the process can be
repeated for orientations differing by 15" and the set of distributions preserved.
Whenever the observer antomaton deals with a specific edge while extracting
features, the corresponding distribution 1s referenced.

5.1.4. Computing 2D Motion Uncertainty

In this section we describe how to combine sensor and image processing sirategy
error models to compute models for the recovered image flow valnes. To simplily
the idea, let’s assume that we have recovered a specific feature point () in
an 1mage grabbed at time instant £ and the corresponding pomt (3, 12) a1 lime
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Fig 17 Disimbution of the x-coordinate displacement.

Fig. 18. Combined sensor and strategy distribution.

t + 1. The problem is to figure out the distribution of v,. As an example, to
explain the procedure, let's assume that from the 3D sensor distribution we have
huve computed the marginal density function of the = coordinate of x| in the

point
fx(x) = /;t Fx vz, pdy,

where H is all the possible y values within the sensor uncertainty model.

The same process is applied for the strategy distribution and another function
15 recovered. To simplify things, lets assume that both distributions are identical
lo the distribution in Figure 17, that is, there is an equal probability equal to
/3 that the ® coordinate is the same, or shifled one position to the left or the
right. Combining the spatial information of both distributions as a convolution
process would produce the distribution shown in Figure 18, which is the error
probability density function of having the 3D feature x 2D coordinate in the
recovered image 2D @ position. Further more, assume that iz distribution is the
same.

The problem reduces to finding the distribution of the optic flow 2 component,
nsing these two combined distributions, As an example, if 2y = 10 and w2y = 22,
then all probability statements can be easily computed, a set of some of these
probability statement 1s shown

Plu, =8) = P((JT; = 12YA (L2 = 20)) =

x
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Consequently, all distributions and expected values can be compuied from the
combmation of the sensor level and strategy level uncertamty formulation. Those
flow models are then passed to the higher levels for 3D recovery. In the next
section we discuss a method for refining the measured 21 motion vectors and we
then proceed to formulate the 3D modeling of events as defined by the observer
HIVIERTREHTERTIN

5.2. REFINING IMAGE MOTION

In this section we describe a methaod 1o refine the recovered 2D motion vectors
on the image plane. Having obtained from the sensor and extraction siralegy
uncertainty levels distribution estimates for the image flow of the different fea-
tures, we now try to eliminate the unrealistic ones. We concentrate on the flow
estimates for the motion of the manipulating hand and develop a technique that
is to be used during the observation process as a means to reject fanlty esti-
mates. Faulty estmates can resulis from noise, errors or mistakes in the sensor
acquisition process, manipulation or visual problems like occlusion, modeling the
uncertainties in the previous two levels may still leave room for such anomalies.

We assume that the features to be tracked on the hand lie on a planar surface
or that segmenting the hand as a polyhedra object into planar surfaces is simple,
although the modification would be very simple to allow for arbitrary 3D posi-
tions of the feature distribution. Since we know a prion some information about
the mechanical capabilities and limitations and geometric properties of the hand,
also about the rate of visual sampling for the observer, since we actualy control
that, we might be able to assert some limits on some of the visual parameters in
our sysiem

¥

Fig. 19 Fitting parabolic curves,
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To llustrate the idea behind the approach, consider Figure 19, assume all the
gurves are 2D parabolic functions y = az? + bz + ¢, if the set of data points
are as shown in the figure, then a least square error fit will produce the function
D). However, if we know some upper and lower limits on the values of the
coefficients a, b and ¢ then we might be able 1o construct an upper and lower
function parabolas A and €' as an enclosing envelope, outside which we can reject
il the data points. In that case, we can do a fit for the points that lie inside the
envelope and oblain a more realistic function as shown by the curve B.

The situation for rejecting estimates for the image flow is not much different.
We know equations that govern the behaviour of the image flow as a function
of the structure and 3D motion parameters, as follows

V- 7 V.\'

Zo Z
Vz W

Uy = (1 —px — rm}(u Z 7

v = (1 —pz— qy)(_}: ) + [;r,yQ_\- - (I } .’I-‘l).(ly -+ yﬂz].

) + [[I + yl)ﬂx — xyQdy — xﬂg}.

Which are second degree functions in @« and y in three dimensions, v, = fi(z, )
and v, = fote, ). In addition, we know upper and lower limits on the co-
efhicients g, Ve, Ve Vi, Qi Qv Qg and 2,5, as we know that the mechani-
eal abilities of the robot arm holding the hand will make the relative velocity
and distance between the camera impossible to exceed specific values within
visual sampling timing period. So the problem reduces to constructing the three-
dimensional envelopes for v, and v, as the worst case estimates for the flow
velocity and rejecting any measured values that lie outside that envelope. Fig-
ure 20 indicates the maximal and minimal v, that can ever be registered on the
CCD array of the camera, the z and y are in millimeters and the = — y plane
tepresents the CCD image plane, the depth Z is the maximal v, in millimeters
on the CCD array that can ever be registered. It can be noticed that they are
symmetric due o the symmetry in the limits of the coefficients.

As an example, we write the equation governing the maximum v, value in the
first quadrant of the » — y plane (z*, y™).
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Fig. 20, Muximul and munimal oy,

-

Fig. 21, Maximal and minimal flow magnitude.

where the subscripts s and [ denote lower and upper limits, respectively. At
first sight the problem of determining the maximum value of v, seems to be a
constrained nonlinear optimization problem, which is true, however, assuming
that the upper and lower limits of the coefficients are cqual in magnitude and
opposite in directions (except for Z,, which is used only as Z) makes the
input to the max and min functions in the above equations always equal and thus
providing one more degree of freedom in choosing the parameters and making
the choice consistent throughout the equation. Thus the problem becomes simply
to write eight equations as the above one for cach of v, and vy, to draw the
function n each of the four quadrants for maximum and minimum envelopes
We shall not rewrite the sixteen equations here, but we show the results for v, in
Figure 20, Figure 21 represents the maximum and minimum magnitude m(z, y)
for the image flow at any given point, where

) 7T
m(z,y) = \/ Vg + V.

It should be noted that the maximum absolute possible value of the image flow
18 minumal at the origin of the camera image plane and increases quadratically
as the distance increases from the center.

The above envelopes are then used to reject unrealistc 2D velocity estimales al
different pixel coordinates in the image. As a further note, it should be mentioned
that some on-line elimination procedures can be implemented depending on the
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current positions in the observer automaton, for example, the image flow field
tends to assume certain configurations in the image plane depending on the 3D
motion, independent of the object or the hand structure, if the motion is only
relative rotational velocities, the flow vectors all tend through pass from the
same point. In other words, in addition o off-line a priori estimation of the
envelopes and on-line testing of measurements, we can also develop custom
rejection techniques for certain observer automata states.

84 RECOVERING D UNCERTAINTIES

Having discussed methods for computing the three-dimensional motion vectors
and structure parameters between Iwo image [rames, we now use the same for-
mulations described earlier for 3D recovery but using 2D error distributions as
estimates for motion and/or feature coordinates in order to compute 3D uncer-
tainty distributions for the real world motion vectors and structure instead of
singular values for the world events,

As an example to illustrate the idea, let's assume that we have a lincar system
of equations as follows

x+ 3y =z,
2x 4y = 2.

The solution of this system is very easily obtained as

3 !
= = 23— = X
5 5

2 |
I = 5 =1 5 e

That is, a lincar combination of the right hand side parameters. If the parameters
21 and 2> were random variables of known probability distributions instead of
constants, then the problem becomes slightly harder. which is, to find the linear
combinution of those random varables as another random varnble. The obvious
way of doing this would be 10 use convolutions and the formula

Px 1 x:(0) = Y Px, X3,y — )
R
for the sum of two random variables Xy, X, for any real number y and/or the
formula for linear combinations over the region fi, which is for all z such that
Py, x.(x, —x) > 0. Using the moment generating function or the characteristic
function seems also to be a very altractive altemative. The moment generating
function M of a lincar combinution of random variables, for example X, X
can be written as

Max, 1 bxz1e(l) = e (ﬁ'fx‘(u.f.)ﬂ'fx?(hf.}).
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for independent random vanables X, X5 That is, the problem of solving linear
systems on the form Az = b, where b 1s a vector of random variables, may be
reduced to finding closed form solutions for o in terms of the random parameters
(using any elimination technique) and then manipulating the results and finding
different expeciations using moment generating or characteristic functions. The
solutions we suggest to this problem of finding the random variable solution of
the 3D parameters utilize the techniques we described in the previous section.
Using either the two-frame 1terative technique or the closed form algorithms, it
should be noticed that the problem reduces o either solving multi-linear systems
or 4 single one. In that case, using elimination and characteristic Tunctions for
computing the required expectations and distributions is strmght forward. As an
example, the recovered 3D anslatonal velocity cumulative density functions
for an actual world motion of the Lord gripper equal to

1..-? =0cm, WViy=0caom and Vz =13 cm

i§ shown in Figure 22, Tt should be noted that the recovered distributions repre-
sents a lairly accurate estimation of the actual 3D motion.

Thus, we have suggested algorithms for the quick estimation of the 3D un-
certainties i the structure and motion ol the manipulution system. The nexl
step would be 1o refine these estimates and use them for asserting the world
events. Next, we describe techniques for elimmating and refining the 31 models
of munipulation under observation, whose recovery was discussed in the pre-
vious sections. In particular, we discuss a strategy 1o reject improbable evenis
that might have been computed due to noise and uncertainties that were not
compensated for in the distribution formulation, also because of unsmooth visual
artifacts. We employ both existing knowledge about the mechanical properties
of the manipulation and also knowledge from the current state of the observer
automaton,

We concentrate onr treatment of the subject on the three-dimensional behaviour
of the hand that is used 1 mantpulation, The hand is assumed to be a well defined
entity, and as we mentioned before, changing the hand and/or its characteristics
can be modeled by simply plugging in a module that describes the new charac-
tenstics, the same hand is used through out the entire manipulation activities.
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Fig. 22, Cumulauve density functions of the translanonal velocity,
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Knowing the joint limits of the manipulating robot will enable us 1o reject
improbable recovered 3D motion vectors, that could not have occurred in the
real 3D world. As an example, assuming that we use a gripper with two “claws’
having only one degree of freedom, then, obviously, any recovered 3D rotational
velocities for the claws should be rejected. Unrealistic slope estimations should
also be rejected, knowing the robotic reachability of the end effector, with respect
to the viewer.

The current position in the observer automata will allow refining the recovered
3D event distributions, as it might well be the case that impossible manipulation
actions at a specific manipulation stage are recovered. It is impossible, for
example, due to the visual sampling rite, that the hand 1s in an upright position
holding a nail in the center of the image plane at a ume step, then having 1t
disappear or hold another object at a dramaucally distant 3D position in the
next tme step, unless, of course a manipulation or viewer system failure has
happened. In that case, some designated Tail state should be accessed, discarding
the recovered parumeters. Limits on Vi, Vi, Vz, Qv Qy Q7 and Z are asserted
for every observer subset of siates, and used for refining the recovered 3D world
events.

6. Utilizing the Framework

In this section we discuss how to use the framework of states, events and un-
certwinty that was developed in Sections 3, 4 and 5. In particular, we address a
strategy for navigatung the observer automaton and subsequently assert different
manipulation states and perform the necessary tracking actions. We address some
other aspects of our hybrid representation that could be explored to achieve a
higher level of robustness and modulanty. We discuss detection of error states
und/or sequences which could have a number of applications in the manufactur-
mg domain. We then proceed 1o discuss strategies for constructing a mapping
module that transforms task descriptions into a design of & DEDS automaton. We
also address some computational complexity issues for the developed framework.

At this point in the hierarchy of recovery and uncertainty levels, we have
established methods and algorithms for recovering the refined three-dimensional
velocity and relevant structure parameters of the scene under observation. In
addition, we have computed the distribution of the uncertainty in the numerical
values of some of the parameters in real-ume. For example, the computed value
for the translational veloeity Vy might be a random variable lving between two
valies Vi and V5 with a known probability distribution ., The same applies for
all the other parameters for the different components in the scene. The problem
now is how to make use of these distribution values in order to be able to navigate
in the observer automaton as defined in Section 2 and demonstrated by examples
in Section 3. In the following section we deseribe one such nuvigation strutegy.
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6.1. NAVIGATING THE OBSERVER AUTOMATON

Having built the DEDS automaton model of the visnal sysiem and s ohserver,
we have a set of events that are defined as ranges on the visual scene parameters
that causes state transitions between the automaton states. As a simple example,
there might be two different events branching from a state in some task observer
automaton and causing state transition 1o two other states, and a self loop caused
hy the continuous dynamics within a coarse quantization of 4 DEDS state, as
follows
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In addition to other limits on the other scene parameters. That is, if £y occurs
within a specific range, then the corresponding state transition should be asserted
according to the above set of cvent deseription.

The problem then reduces to computing the corresponding areas under the
refined distribution curves obtained from the hierarchy levels. In the case of the
presence of more than a single parameter in the transition event description, then
the corresponding area under each parameter curve is computed and multiplied
for each parameter in the event definition. The goal is to find the probability of
the occurrence of cach event. In the above example, the goal would be to find
the probability of ¢, ez and e3.

An obvious way of using those probability values is to establish some threshold
values and assert transitions according to those thresholds. For example, if for
any event in the set (e, e and e3), the computed probability of the range is > 0.7,
then the corresponding state transition should be asserted. It should be noted that
those threshold values are highly task and state-dependent, appropriate values for
the thresholds can be determined by performing many experiments for different
task descriptions. The thresholds can also be updated adaptively according to the
carrent manipulation patterns under observation. Many problems may arise alter
having obtained the above probabilities al the current automaton state. It might
be the case that none of the obtained probability values exceeds the set threshold
value and/or all values are very low. In that case, there 15 a good chance that
we are at either the wrong automata state, or that a gross error has occurred in
manipulation or some system failure.

The remedy to such problems can be implemented through time proximity,
that 1s, wait for a while (which is to be preset) till a strong probability value
is registered and/or backrrack w the auwtomaton model for the observer ull a
high enough probability value is asserted, a fail state is reached or the nital
ambiguity is asserted, The backtracking strategy is implemented using a stack-
like structure associated with each state that has already been traversed. A stuck
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Fig. 23, Navigating the nhserver automata

of the latest computed probability values sorted in descending order as an index
1o the corresponding event. As soon as a forward traversal is performed, the wp
vialue should be popped. Backtracking can be done by using the top of the stack
value and do the corresponding transition and compute the new probabilities for
the events. A lather state parameler should also accompany each state that has
been already been traversed. In cuse all the stuck has been exhansted for a specific
state, the father state should be accessed and a new route be accessed. Exhausted
states are labeled and never revisited while backtracking. For states that have not
been visited at all, new stacks and computations should be performed. Figure 23
depicts a flowchart for the traversal procedure,

Having established techniques for navigating the observer, the model descrip-
non 15 now completed. The formulation uses uncertainties to assert current siates
of the manipulation system and attempts to recover from mistakes and errors,
The model uses different intermediate levels for computing uncertainties, from
the sensor level to the observer automaton level.

0.2 HYBRID REPRESENTATION NOR OBSERVERS

In this section we urgue that our formulation for the observer system is a good
solution for the general problem of defining, monitoring and controlling hybnd
system as applied to the observation domain. Hybrid systems. as mentioned
in Section 2 are systems in which digital and analogue devices and sensors in-
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teract over fime and in which representation of states and the physical system
condition includes continuous and discrete numerics, in addition to symbols and
logical parameters, The problem of visual observation falls with in the descrip-
tion of hybrid systems, as there 1s a need to report, observe and control distinct
and discrete system states. There is also a need for recognizing continuous 2D
and 3D evolution of parameters. Also, there should be a symbolic monitoring of
the current state of the system, especially in the manipulation domain, What we
present in this work is a framework that works for the class of hybrid systems
encountered within the robotic observation paradigm. The representation we dis-
cussed in the previous sections allows for the symbolic and numeric, continuous
and discrete aspects of the observation task.

The tramework we use also allows for the propagation of uncertainty in the
world and asserts state transitions and events accordingly. The system also
attempts to recover from mistakes that happen in the event recovery mechanism
and/or the manipolation domain. The representation allows for flexibility in the
coarse description of the system states. We have used a representation of discrete
event dynamic systems, which is augmented by the use of a concrete definition
for the events that causes state transitions, within the observation domain, We
also use some uncertainty modeling to achieve robustness and smoothness in
asserting state and continuous event varialions over time. The approach used
m our frnmework focuses on issues in visual observation that are decided by a
suitable set of tracking actions which the observer can undertake to reposition
itself’ amtonomously and intelligently,

0.3, HIERARCHICAL REPRESENTATION

Figure 24 shows a hierarchy of three submodels. Motives behind establishing
hierarchies in the DEDS modeling of different tasks includes reducing the search
space of the observer and exhibiting modularity in the design. This is donc
through the designer, who subdivides the task space of the manipulating robot

g'rl T2
=~
T

3

Fig. 24. A hienchy of tasks.
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into separate submodels that are mherently independent. Key cvenls cuuses
the transfer of the observer control to new submodels within the hicrurchical
description, For example, having a separate submodel for the grasping action
might enable the DEDS obsarver automaton to concentrate on the part of the
visual scene in which tha claws of the hand starts to enclose the object, while
the observer remains in that submaodel. An event like the object disappearance or
the full enclosure and motion of the hand would then transfer the control in the
observer agent 1o a different submodel. Transfer of control through the observer
hierarchy of models allows coarse to fine shift of attention in recovering events
and asserting state transitions.

fid ERROR STATES AND SEQUENCES

In this section we uatilize the observer framework for recogmizing crror states
and sequences, The idea behind this recognition task 18 to be able to report on
visually incorrect sequences. In particular, if there a pre-determined ohserver
model of a particular task under observation, then it would be useful to deter-
mine il something went wrong with the manipulation actions, The goal of this
feporting procedure could be to alert operators or possibly to supply feedback to
the manipulating robot sa that it could correct its actions.

We do not consider supplying any sort of correction commands to the manip-
ulating robot. In this treatment we consider only the recognition of such errors,
Some examples of errors in manipulation include unexpected behaviour of the
system, such as objects falling unexpectedly from the manipulating hand dur-
ing a grasp and lift operation or some visual errors like unexpected occlusions
between the observer camera and the manipulation environment.

There are a number of ways i which these problems could be reported. One
such way can be to comply with the navigation strategy that was described in
the first section of this section in order 1o capture the current state, if some event
match occurred while navigating. Ilowever, if no match occurs than the error
would have 1o be reported. Another quick method would be to report directly
on any such inconsisiencies,

A simple example for an inconsistent manipulation sequence is shown in Fig-
ure 25, If the automata model does not allow for the sudden disapearance of
enclosed objects (e, iF an object 1 enclosed, then the hand would have to put
the object on a support surface hefore releasing its grip) then the transition from
the visual scene (e) to (f) is clearly an illegal one.

The correct sequences of automata state transitions can be Tormulated as the
set ol strings that are acceptable by the observer antomaton. This set of strings
represents precisely the language describing all possible visual task evolution
steps. Thinking of the acceptable DEDS observer sequences as the language
accepted by the automaton model motivated describing a possible strategy for
constructing o mapping module. Which is discussed in the next section,
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An error lilung sequence
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6.5. MAPPING MODULE

The object of having a mapping module is to dispense with the need for the
manual design of DEDS automata for various tasks. In particular, we woull
like to have an off line module which is to be supplied with some symbuolic
description of the task under observation and whose output would be the code
for a DEDS automata that is to be executed as the observer agent. A graphical
representation of the mapping module is shown in Figure 26.

The problem reduces to figuring out what is an appropriate form for the task
description, The discussion in the previous section motivated regarding this
problem as the inverse problem of determining acceptable languages lor a specific
DEDS observer automaton. In particolar, we suggest a skeleton for the mapping
module that transform a collection of input strings into an automata model.

The 1dea is to supply the mapping module with a collection of strings that
represents possible state transition sequences. The input highly depends on the
task under ohservation, what is considered as relevant states and how coarse
should the antomata be.  The sequences are input by an operator. It should
be obvious that the ‘Garbage-in-garbage-out” principle holds for the construction
process, in particulur if the set of inpul strings is not representative of all possible
scene evolutions; then the automata would be a faulty one. The experience and
knowledge that the operator have would influence the outcome of the resulting
model. However, 1t should be noticed that the level of experience needed for
providing these sets of strings is much lower than the level of experience needed
for a designer to actually construct a DEDS automata manually. The description
of the events that cause transitions between different symbaols in the set of strings
should be supplied to the module in the form of a list.

As an illustrative example, suppose that the task under is simple grasping of
one object and that all we care to know is three configurations; whether the hand
15 alone in scene, whether there 1s an object in addition to the hand and whether
enclosure has occurred. If we represent the configurations by three states h, h,,
and h.. Then the operator would have to supply the mapping module with a
list of strings in a language, whose alphabet consists of those three symbols,
and those strings should spun the entire language, so that the resulting automata
would accept all possible configuration sequences. The mapping from a set of

Tak Language

Mapping Module ]TE-T
Trantiuon
Conditon

Fig. 26, "The mapping module.
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Fig. 27 An antomaton for simple grasping.

strings in a regular language into a minimal equivalent automata is a solved
problem in automata theory.

One possible language to describe this simple automata is

L = hh*hohiheh,
and a corresponding DEDS automata is shown in Figure 27.

The best-case scenario would have been for the operator to supply exactly
the language L to the mapping module with the appropriate event definitions.
However, it could be the case that the set of strings that the operator supply do not
represent the task language correctly, and in that case some learning techniques
would have to be implemented which, in effect, augment the input set of strings
into a language that satisfies some pre-determined criteria. For example, y* is
substituted for any string of 's having a length greater than n, and so on. In that
case the resulting automata would be correct up to a certain degree, depending
on the operator’s experience and the correctness of the learning strategy.

f.6. COMPLEXTTY ANALYSIS

In this section we discuss complexity issues for some of the technigues used
throughout the developed model. The issue of the computational complexity of
building the DEDS model will not be discussed here, as the process is currently
being done manually. The computational cost for traversing the automaton and
asserting the events is the focus of the complexity issues under consideration.
Asserting state transitions within the DEDS observer model is one of the
major sources of the computational burden associated with navigating the state
space of the observer automata, There is a computational cost associated with
converting 2D cues from the camera image plane into meaningful descriptions
of the 3D world event uncertainty. As discussed in Section 5, recovering the
3D cumulative density function (CDF) distributions of world events involves
solving limear systems ol random variahles, in particular performing a set of
spatial convolutions for the different estimates in the image plane to propagate
them inio a set of 3D parameter disiributions. The factors contributing o that
kind of computation are the number of points and the number of spatial samples
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(in the 2D plane) taken to represent the spatial probability density function of
having the 2D feature at a specific (x, y) location. The process mvolves using
the moments generating function in the x and y directions for each point and
multiplying them to solve each linear equation.

The number of coefficients in the equations is equal to: 2x number of points,
as there is a factor mvolving the x and y coordinates for each point. The cost for
computing the moment generating function (MGF) for each 3D value involves
computing the product of all the MGF's of the 2D coefficients, which depends
on the number of samples in cach coefficient distribution and is exponential with
respect o the number of coefficients, Thus the number of operations is of the
order

()(m"‘"‘).

Where s the number of samples for each 2D distribution and 7 15 the number
of pomts, Tt is obvious that the process will work for only a small number of
feature points and a low number of 2D distribution samples. The complexity of
the traversing the DEDS automaton graph is essentially the complexity of doing
a depth first search and thus 1s considered to be of an acceptable computational
behaviour.

7. The Experimental System and Resulis
7.1, THE EXPERIMENTAL DESIGN

The design and the experiments for the proposed framework were performed
on the architecture shown in Figure 28. The manipulating agent is the Lord
experimental gripper and is mounted on a PUMA 560, The manipulating agent
15 essentally model by an external operator to perform some actions on a set of
objects lying on a table. There is no coupling between the observer robot and
the manipulation robot.

The observer agent 1s another PUMA 360 on which a camera is mounted, The
low level visual feature acquisition is performed on the Max Video pipelined video
processor at frame mte, In particular, there are two separate paths from the vision
sensor. One path is for the computation of the hand 3D position and onentation
and this is done through the MaxVideo. The other path (the inner loop) is done on
a SparcStation, in which the image processing modules resides, those modules
compute 2D cues from the scene under observation. Identification of ohjects,
their location with respect to the hand and establishing contact, moments and
correlation procedures are all performed within the inner loop.

The 2D to 3D conversion, probability computations, and the state machine
transitions are performed on another SparcStation. All the ‘thinking’. uncer-
tminty recovery and DEDS automaton updating is performed on that machine.
The decision medules get their mput data from the feature acquisition procedure
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Fig. 28, The wehitecture of the system,

and the image understanding modules that reside on the other two machines. The
output from the thinking modules is typicaly in the form of reporting states with
the associated uncertainty and position control vectors to be supplied 1o the ob-
server robot for relocation depending on the current state of the DEDS automata.
The design exhibits modulanty, the low-level event identification processes and
the high-level ‘thinker’ and controller reside on separate entities. Thus futuie
modifications and enhancements could be coded and executed in a simple and
modular fashion. Enhanced low-level modules for segmentation and 2D under-
standing of the image and to accommodate different kinds of hands could be
coded within the inner-loop computer module. Different DEDS machines for
different task descriptions are to coded within the ‘thinker’ module. Control
vector generation could be modified within the procedure that supplies position
control vectors to the observer manipulator.

7.2, THE EXPERIMENTS

A number of experiments were performed with the lord gripper doing different
manipulating action an a set of different objects. The whole system is tested hy
implementing automatons for recogmzing the different actions under uncertainty
and reporting on them, in additon to performing the necessary tracking move-
ments, in real time. Thus testing both the low-level identification mechanisms
and the high-level formulation.
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Hand and Objects in Scene
Probability = 0.957878

T

Hand enclosing an Object

Probability = 0.926735

Hand is lifting an object

Probability = 0.918423

Hand enclosing an Object
Probability = 0.962517

Hand enclosing an Object
Probability = 0.994327

Hand is lifting an object
Probability = 0.972103

Fig. 29 A manipulation sequence (observer view) (1).
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Hand alone in scene
Probability = 0.897626

Hand rotating an object and rotating an object
Probability = 0.912675 Probability = 0.994534

Fig. 30. A manipulation sequence (observer view) (2),

Tracking is performed for some features un the gripper, using the MuxVideo
system. The visual tracking system works in real time and a position control
vector is supplied to the observer manipulator, The 2D uncertainty levels were
tested. Feature extraction with uncertainty is performed using different noise
levels as shown in Scction 5, the enclosing ‘envelopes’ were determined for the
mechanical system, the rejection algorithms are completed and utilized, The
refined and recovered 3D distribution of uncertainties are used for navigating the
automaton and asserting state transitions

Some snup shots depicting the observer view, within an experiment that in-
volves grasping, lifting and screwing is shown in Figures 29 and 30. The
corresponding observer state output is writien underneath each image and the
comresponding uncertainty in recovered and displayed. The configuration of the
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Fig. 31,  The vbserver and manipulation agent configuration.

manipulating agent workspace and the observer is shown in some snap shots in
Figure 31.

Figures 32 and 33 illustrate another manipulation sequence. In that sequence
the lord gripper manipulates a set of objects laid on a table. The experiment
was shot with three video camera. The right hand side of the images show
the actual observer and manipulation workspace and the different configurations
as the experiment proceed. The upper left comer shows the observer view,
which is the set of images grabbed by the camera lor processing. The lower lefi
comner shows the observer state, that is, whal the observer ‘thinks’. A graphical
representation of the different states and their change is used, Fail states are
represented by an empty box. Figures 34 and 35 illustrate another manipulation
experiment. In that sequence the hand tries to insert a peg in a hole, The screen
structure is the same as for the previous experiment. The observer approaches
and focuses on the peg and hole when the peg gets nearer o the hole. State
changes occur when the hole appears and when insertion is asserted.
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Fig. 32. Observer state and view (1)
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Fig. 33, Observer state and view (2)

8. Conclusions and Future Work
8.1, CONCLUSIONS

We have proposed a new approach for solving the problem of observing a moving
agent. Intelligent observation and recognition of events is performed as opposed
to simple tracking. In particular, we described a system for observing a manip-
ulation process. Our approach uses the formulation of discrete event dynamic
systems (DEDS) as a high-level model for the hybrid evolution of the dynamic
scene, The proposed system utilizes the a priori knowledge about the domain
of the manipulation actions in order to achieve efficiency and practicality. Task
models are built by the coarse quantzation of the visually observable manipu-
lavon actions and constructing a DEDS automaton description. The high level
formulation allows for recognizing and reporting the visual system state as a
svmbolic description of the observed tasks.

The proposed formulation takes inte consideration the presence of uncertamties
i the observed behaviour of the system. The uncertainties are utilized in order to
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(6)

Observer state and view (3)
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(12)

Fig. 15. Observer state and view (4)
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achieve robustness and to allow for correcting the observer’s actions. Asserting
transitions within the state deseription of the visual 1asks is based on the recovered
values of the observed parameters and the associated world uncertainties. The
process develops coarse quantization of the visual manipulation actions in order
to attam an active, adaptive and goal-directed sensing and reporting mechanism.
Discrete aspects of the observation process are exploited in order to attach a
meaningful symbolic interpretation of the observed task at different instances of
the visual process. The formulation is flexible, since the quantization thresholds
between different states can be tuned as the observed task requires. Continuous
aspects of the process are also preserved as the relevant parameters are observed
as the agent moves,

We started by describing the automaton model of a discrete event dynamic sys-
tem as applied to visual observation of manipulation processes, and the observer
construction mechanisms. We then developed efficient 2D and 3D low-level
event-identification mechanisms for determining different manipulation actions
in the system and for moving the observer. Next, we defined and constructed
different levels for converting the raw 2D image data models into meaningful
3D deseriptions of the world events. The formulation computes and refines un-
certuinty models resulting from errors in the 2D and 3D recovery mechanisms
and the agent movements, The formulation allows the observer to navigate the
decision making automata in real ime with a stable behaviour through the state
space trajectory and thus assert world events and transitions utilizing the devel-
oped framework. We also discuss some techniques for the automatic building of
observer automatons.

RZ APMPLICATTONS

The developed observer model could be used for a variety of visual observation
tasks within many domains. The approach lends itself to be a practical and feasi-
ble solution that uses existing information in a robust and modular fashion. The
work examines closely the possibilities for errors, mistakes and uncertainties in
the manipulation system, observer construction process and event identification
mechunisms. Ambiguities are allowed to develop and are resolved after finite
time, recovery mechanisms are devised too, Theoretical and experimental as-
pects of the work supports adopting the framework as a new Kind of basis for
performing goul-directed sensing for many task-oriented recognition, inspection
und observation of visual phenomena.

The observer could be used for autonomous observation and reporting of fully
or semi-automated manufacturing tasks. The observer can delermine error se-
quences within a task and report on them and possibly provide feedback to the
manipulating robots, The framework could be used for intelligence gathering in
hostile envitonments, where there exists some a priori knowledge about some
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aspects of the twerrmn and/or targets, The observer can be used for structured in-
accessible workspaces where there exists elements that are potentially dangerous
for humans, as in the case of piling up heaps of toxic waste. The thresholds for
gquantizing the framework could be tuned to allow for expanding the state space
of the DEDS automaton for tasks that require precision in reporting, for example
within a surgical operation that is performed by a robotic end effector.

The general framework of a controllable state machine, that i1s augmented by
mechanisms for identifying and recovering the events under uncertainty, could
be used for general observers. Manipulation observers are a subset, obstacle
avoidance obgervers and planning observers are another class that our framework
could be used for designing. In the next section we discuss the contributions of
the work and some conclusions.

5.3, CONTRIBUTIONS
We see the major contributions of this work in the following arcas:

e Defining a framework for intelligenmt and autonomous observation. The
observer recognizes visual tasks, understands the meaning of the dynamic
scene evolution and reports symhbolically on the current visoal state, it also
repositions wsell” intelligently.

o Utilizing the existing knowledge aboul the environment for developing a
predictive model of visual observation that delivers a goal-directed sensing
mechanism in real time with guarantees for stability and observability.

e Constructing event identification mechanisms for recovery of 2D and 3D
actions within the visual manipulation domain. The events are then used
for asserting state transitions within the DEDS automaton.

e Modeling and using visual uncertainties for recovering the 3D world event
uncertainties and to assert and report on distinct and discrete visual states,
while preserving and using the continuous dynamics of the system.

o Utilizing the computed world ancentainties for asserting state transitions,
navigate the observer automaton, backtracKing. performing the necessary
tracking actions and error recovery.

In the next section we examine extension ideas and future research oppormunities,

B4 EXTENSIONS AND FUTURE RESEARCH

The proposed formulation can be extended to accommodate for more manipu-
lation processes. Increasing the number of states and expanding the events set
would allow Tor a vanety of manipulating actions. The system can be made
more ‘modular” by constructing a general automaton model of a discrele event
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Fig 6. Light source location as a controllable event.

would be necessary. Light sources and other sensors could be considered as
types of resources, that is, controllable events. Figure 36 depicts such a situation
where the light source position i1s contrallable,

The idea of DEDS as skeletons for observation under uncertainty can be ex-
plored further to allow for varions other visual tasks. We discussed observing ma-
nipulation as a subset of observing moving agents and/or environments, however,
similar formulation can be described for other tasks, like recognizing stationary
ohjects with optimal observation costs, i.e., minimal motion events. Perturbation
analysis [12, 44, 82] can be performed for the average task behaviour of frequent
visual events within a specified manipulation domain. Disappearing objects and
partially oceluded objects can also be recognized optimally using the proposed
scheme, using time proximity as another dimension for asserting the identity of
different targets, that is, allow recognition and/or tracking to be completed within
a pre-specified, task-dependent time frame. Delayed computation decision states
could be used to angment the system. At those states decisions would have to
be made regarding whether to go on with a specific computation, or to do it with
4 certain resolution. Observers could be formulated for mobile agents working
in an environment. Different types of observers would be needed and would
probably have to cooperate with each other and with the agents.

Appendix
A 3D RECOVERY ALGORITHM

One can model an arbitrary 3D motion in terms of stationary-scene/moving-
viewer as shown previously in Figure 12. The optical flow at the image plane
can be related to the 3D world as indicated by the following pair of equations
{in case of a planar surface), for each point (z. %) in the image plane
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where v, and v, are the image velocity at image location (i, y), (Vx, Vy, Vz) and
(Qy, L2y, Q) are the translational and rotational velocity vectors of the observer,
p and ¢ are the planar surface orientations. The situation becomes, for each
point, two equations in eight unknowns, namely, the scaled translational velocities
Vx/Zoe VW /Z, and Vi /Z,, the rotational velocities £y, §2y and L2z and the
orientations p and ¢. Differential methods could be used to solve those equations
by differentiating the flow ficld and by using approximate methods to find the
flow field derivatives. The existing methods for computing the derivatives of the
flow field usually do not produce accurate results. Our algorithm uses a discrete
method instead, 1.e., the vectors al a number of points in the plane is determined
and the problem reduces to solving a system of nonlinear equations.

It should be noticed thal the resulting system of equations is nonlinear, how-
ever, it has some linear properiics. The rotational part, for example, is totally
linear, also, for any combination of two spaces among the rotational, translational
and slope spaces, the system becomes linear. For the system of equations to be
consistent, we need the flow estimates for at least four points, in which case
there will be eight equations in weight unknowns.

TWO-FRAME ALGORITIIM

The algorithm takes as input the estimaie of the flow vectors at a number of
points = 4 obtained from motion between two images. It iterates updating the
solution of each subspace by using the solution of the other two subspaces. Each
update involves solving a linear system, thereby it requires to solve three linear
systerns to complete a single iteration. This process continues until the solution
converges, or until no significant improvement is made. The algorithm proceeds
as follows:
I. Set p,qg =0;
Input the initial estimate for rotation;
Solve the lincar system for translation;
2. Use the translation and rotation from step 1:
Solve the linear system for the slope;

3. Seti=1;
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While (z < Max. Iterations) and (no convergence) Do
Solve for the rotations using latest estimates ol ranslations, p and ¢;
Salve for the translations using latest estimates of rotations, p and ¢:
Solve for p,q using latest estimates of translations and rotations;

end While;

Complexity Analysis

As we mentioned earlier, one should notice in the equations relating the flow
velocities with the slope, rotational and translational velocities that they are
‘quasi-lincar’, il one can suy so. The equations exhibit some linear properties.
This suggests that a purely iterative technique for solving nonlinear equations
might not be an excellent choice, since, the variables are linearly related in
some way. To think of a way of ‘inverting’ the relations might be a good
start, although to do that without a framework based on iterating and gravitating
towards a solution is not a good idea. This makes one think of applying &
method which converges faster than a purely iterative scheme like Newton's
method. However, the complexity of Newton's method is determined by the
complexity of computing the inverse Jucobian, which is of an order of N2, or
N? 81 multiplications as the lower bound using Strassen's technique. In our case,
since we have at least 8 equations in 8 unknowns, the complexity is of order
8% = 512 multiplications at every iteration, and the method does not make any
use of the fact that the set of equations at hand exhibits some linear properties.
The algorithm proposed, on the other hand, makes very good use of the fact
that there are some lineurity in the equations, by inverting the set of relations
for each subspace at every iteration. The complexity at every iteration is of the
order of the complexity of computing the pseudo-mverse which is of the order
of (3* + 3 + 2%) multiplications at each iteration, where the first 3 comes from
solving the system for the rotational variables, the second 3 is for the ranslations,
the last 2 1s for p and ¢. This is equal to 62 multiplications at every iteration,
which is significantly less than the 512 muluplications in a method like Newton's
for example. It was noticed that the algorithm converged to solution in a very
small number of tterations for most experiments we have conducted so far. The
maximum number of iterations was 6.

Using the latest solution obtained from the two-frame analysis as the initial
condition for the next two-frame problem n the image sequence would further
decrease the complexity, as the next set of parameters would, most probably, be
close m values to the current parameters, thus the number of iterations necded
to converge to the new solution would decrease significantly.
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Observations

¢ The algorithm is not sensitive to the initial condition of the onentation pa-
ramelers. The plane is simply assumed 1o be a frontal one at the beginning.
The slape paramelers evolves with iterations.

# The algorithm is sensitive to input noise just like other existing algorithms,
some experiments shows the sensitivity with respect to the change of view-
ing angle, Similarly, the algorithm performs better for a large number of
points that are evently distributed throughout the planar surface, than it
does for clustered, smaller number of image points,

o [1is proven that there exists dual solutions for such systems. However, 1if
our method gravitates towards 4 “fixed point” in the solution space we can
find the other explicitly in terms of the first one from the relations given
by Waxman and Ullman [92].

MULTI-FRAME ALGORITHM

The ordinary differential equations that describe the evolution of motion and
structure parameters are used to fing the expression for the expected parame-
ler change in terms of the previous parameter estimates. The expected change
and the old estimates are then used to predict the current motion and structure
parameters.

At time instant ¢, the planar surface equation is described by

Z=pX +qY + Z,.

To compute the change in the structure parameters during the time interval di,
we differentiate the above equation o get

A N A L
7L TR R T T dt ' dt

The ume derivatives of (X.Y.,Z) in the above expression are given by the
three components of the vector —(V + §2 x R) that represent the relative motion
of the object with respect to the camera. Substituting these components for
the derivatives and the expression pX + ¢Y + Z, for Z we can gel the exact
differentials for the slopes and Z,, as

dZ, = Z, [y + Vx)p — (Qx — Wy )g — Vz] e,

dp = [p(Qyp — Qxa) + (Qy + Qzq)] dt,
dg = [q(ﬁyp — Qxq) — (Qx + sz] di.
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Image Sequence . Two-R scovered Parameters
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Fig. 37, Two-frame algorithm.

Using the above relations, we can compute the new structure parameters at time
{4+ di as

p = p+dp, g =q+dq and Z) =2, dZ,

Thus the slope parameters evolve at time | 4 df as follows

411 T8 ey ][]

The new translational velocity V' at time £ 4 di can be found in the absence of
accelerations from

Vi=V+Vxad.

Dividing V'’ by Z] we get the new expected scaled translational velocity com-
ponents at time & 4 dt as follows

v [V s QO] [W
lr Vf- } =W |+ ]|-Qz -—-s Qg Vy | di
Vz Vz Qy -Qy —s Vz

where s is expressed as follows
8= (Qy + Vy )= (€2 y Wig — Vz.

The expected rotational parameters at time £ + dt remain equal to their values at
time t since

=N+ NxNdt =0
and thus

(!lfx. Ll;r. Q’z] — (‘2__\-. 525a‘ QZ}
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g:;li:m Two - Frame Updating Solution
Algorithm Mechanism N
Initial
Conditions

Fig, 38, Mulu-frame algorithm,

Our first multi-frame algorithm uses a weighted average of the expected pa-
rameters at time ¢ + dt from the above cquations and the calculated parameters
using the two-frame iterative algorithm as the solution at time ¢ + d#, and contin-
ues in the same way until the end of the frame sequence, Thus it keeps track of
the past history of parametric evolution. We further develop the first multi-frame
algorithm to exploit the temporal coherence of 3D motion. We develop the ordi-
nary differential equations which describe the evolution of motion and structure
in terms of the current motion/structure and the two-dimensional flow vectors in
the image planc. We assume that the 3D motion is pieccewise uniform in time.

i.e., 2 =V = 0. We then use the equations expressing the time derivative of the
slope derived above and the fact that the derivative of the rotational velocities is
zero and develop the following expressions for the scaled translational velocities
and the depth Z,

WV _ 1 4% dvy , 1 dz,
d¢ Yz, dt  dt Yz, dt
and
dv7; | dZn | d Zu
= Vy — = -V — pvz — qu,.

dat 4z, a' Z d

The extended Kalman filter can then be used to update the solution of the differ-
ential equations. The behaviour of the two-frame algorithm and the multi-frame
algorithm can be conceptualized as a control system a shown in Figures 37 and
38. Parallel implementations could be designed for the system, thus solving for
the structure — motion parameters for cach surface separately. In fact, solving
the linear system at each iteration could also be parallelized. Extra processing is
needed to segment the polyhedra-like hand into separate planar surfaces.
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