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Abstract: The Collective Intelligence Research Tool (CIRT) is an experimental software and hardware research tool. It
provides an inexpensive and efficient alternative research implementation that demonstrates simulations of the
collective behavior of self-organized systems, primarily social insects. The software focuses on 2D simulations of the
woodchip-collecting behavior of termites and 3D simulations of the building behavior of wasps. The hardware
simulation employs a Boe-Bot robot, which has the potential of simulating simple movements of a social insect, by
extending ils functionality through adding sensors and integrating a control chip.
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1. INTRODUCTION

Social insects are known to be capable of
producing complicated colony patterns [1]. Our first
project objective 1s to simulate self-organized
systems using social robots. We have implemented a
robotic termite agent, which is able to simulate the
wood-chip collecting behavior of the termite. By
defining the behavior for one robotic agent, we
could potentially observe the collective building
activity of a group of robots. From a software
viewpoint, our goal i1s to simulate and visualize the
collective building of complex architectures for
termites in 2D space and social wasps in 3D space.
[n addition to simulating self-organized systems by
changing variables such as the population and
obstacle density, the software provides an artificial

life environment for observation of the emergent

behavior of autonomous agents (in our case, termites
and wasps).

Current research on simulation of self-organized
systems and swarm intelligence have a shared
underlying idea that the key feature of all nature’s
patterns is that they are “self-organized” — there is
no guiding hand [1-9]. Existing research projects
include StarLogo, StarLogoT, NASA COIN project,
Repast, AgentSheets, Ascape and SWARM [10-17].
StarLogo 1s a programmable modeling environment
for exploring the workings of decentralized systems,
such as bird flocks, traffic jams, and market
economies [10]. RePast is a software framework for
creating agent-based simulations using the Java
language, which provides a library of classes for
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creating, running, displaying and collecting data
from an agent based simulation [11]. SWARM is a
software package for multi-agent simulation of
complex systems, originally developed at the Santa
Fe Institute [20].

We have implemented the simulation of
collective intelligence systems from both software
and hardware perspectives as a complete
experimental experience. The 2D simulation of
termites’ behavior employs methodology found in
the Starlogo project demonstration and biological
observations [10]. 3D simulation in our project
focused on the building behavior of social wasps,
using the methodology found in the work of Eric
Bonabeau et al. [1].

Our bhardware simulation draws idea from
research done by Krieger M. J. [6]: given robots
with the ability to perform simple object removal
tasks, researchers are able to simulate collective
behavior among cooperative robots (in our case,
termite agents) [6].

2. SOFTWARE SPECIFICATIONS

Our simulation software is built around the
Repast framework. The software adopts the Repast
graphic user interface (GUI). The Repast GUI is able
to initialize, start, pause and stop a simulation. It is
also able to run a simulation step by step by clicking
the step button. It also enables user to alter some of
the simulation variables, such as the size of the
display surface and number of agents [10].
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Repast 18 able to handle 2D termites’ simulation
but has no built-in 3D visualization functionalities.
However, its pure Java implementations enable Java
3D API integration.

2.1 2D Termites Simulation

We based our development on the simulation of
collective building of 2D termites’ colony, which
nvolves two major objects: termites and their
woodchips [10]. The termites gather wood chips nto
piles following a set of simple rules demonstrated 1in
.~ the StarLogo project [10]:

. Each termite starts wandering randomly.

2. If it bumps into a wood chip, it picks the
chip up, and continues to wander randomly.

3. When it bumps into another wood chip, 1t
finds a nearby empty space and puts its wood chip
down.

4, The wood chips eventually end up in a
single pile.

CIRT simulates and visualizes in a 2D space the
termites gathering wood chips into piles based on
the initial behavior definition. It also observes and
predicts possible outcome by redefining a number of
termite and environmental variables, such as the
woodchip density. As the simulation progresses, the
randomly distributed woodchips would end up in a
single large pile [10].

2.2 3D Lattice Swarms Simulation

The architectural patterns grown by artificial
agents moving and acting in a virtual space (in our
case, artificial wasps) are based on biological data
provided by observations of nests built by social
wasps [1]. We based our development on the
~simulation of the collective building of 3D wasps’
colony, which involves two major objects: wasps
and their bricks. Using stigmergic algorithms, these
agents move and act in a 3D lattice and are able to
deposit bricks according to their local neighborhood
configurations (26 neighboring cells for 3D lattice
swarms) using a look-up table [1].

In the stigmertic mode of construction, each
swarmy insect automatically responds (dropping
bricks) when it meets any local configuration. As
explained by Bonabeau et al., the regulation of the
building activity does not depend on the workers
themselves, but is mainly achieved by the nest
structure [1].

The wasps put bricks into a 3D structure using
the following behaviors [1]:

. Each wasp is born at a random location in
the 3D space.

2. The wasp obscerves its local configuration
with 26 neighboring cells.

3. If the local configuration applies to one of
the pre-defined patterns, the wasp drops a
corresponding brick at that location and then moves
to another random location.

4, If the local configuration doesn’t apply to
any of the patterns, the wasp does nothing and
moves (o another random location.

5. The result of the construction eventually
produces certain architectures that can be found in
nature.

CIRT simulates and visualizes in 3D space the
growth of the colony. Social wasps act in 3D space
and drops bricks based on pre-defined behavior rules.
The software observes the outcome by redefining the
number of wasps.

We based our 3D simulation on the exploratory
study of architectural patterns grown by artificial
agents moving and acting in a virtual space [1].
According to research, the neighborhood of the
artificial swarm is composed of the 26 first cells
surrounding the cell it occupies. This neighborhood
is represented with 3 slices along the y-axis (see
figure 1). Based on Bonabeau’s research below
(Table I), are the rules used to produce our simulated
3D architecture when the wasp occupies the central
position of the slice Y (marked as “*”), The upper
and lower matrices in the 3-D lattice are marked as
Y-1 and Y+1. The numbers in tables I and II,
indicate the brick type. When there is no brick 1n
that cell, it will put down a brick of type 1 in the
case of configuration 1 and type 2 in the case of 2 -
911].

Fig. 1 - Local neighborhood in 3D lattice swarm |1}

41




Bei Wang, Dung Hoang, Idris Daiz, Chiedu Okpala, Tarek M. Sobh / Computing, 2004, Vol. 3, Issue 3, 40-50

Table 1. - Rules

RuleNo. | Y-1 | Y Y+1 | Brick Type | RuleNo. | Y-1 |Y Y+1 | Brick Type

I 2221000 000 |1 6 000|222 (0002
2220*0]000 000 |10*0]000
2221000 (000 000000 000

2 000 (000 000 |2 7 000{222 0002
010]0*% 0] 000 000{2*0|000
000|000 |000 000200 000

3 010020 | 0002 8 000|220 |000(2
000(0* 01000 000 [2*0]000
000|000 |000 000|000 00O

& 010222 (000 |2 | 9 10001222 000 ]2
000 10*0]|000 | 000(2*2(000
0001000 000 000|000 {000

5 1001220 {000 |2

! 00012*0]|000
000{000 {000

On the other hand, taking symmetries into
account, some of the above rules expand further. For

example, rule 3 expands to three more
configurations as shown in table 2:
Table 2: Rule extensions
RuleNo. | Y-1 | Y Y+1 | Brick Type
3.1 000,000 0002
100 | 2% 01000
000,000 000
3.2 000|000 000 |2
00010*01000
010,020 1000
33 000,000 000 |2
001 0*%2]000
000000 000

3. SOFTWARE IMPLEMENTATION

Our simulation uses the Repast framework, an
agent based modeling toolkit for java, It has three
major classes: agent, space and model. Employing
the Repast software architecture, an agent class
describes how an agent interacts with the
environment and moves around the space. A model
class coordinates the setup and running of the model.
A space class defines the environment, such as the
distribution of woodchips for the termites’ 2D
simulation and the coordinates of swarms and bricks
in swarm 3D simulations [10].

Our software implementation observes and
predicts possible outcomes by defining a number of
termite and environmental variables, such as the
density of obstacles (wood chips). Figure 2 is a
screen shot for the software simulation in action,
The red rectangle represents termite carrying no
woodchip; orange rectangle represents termite
carrying one woodchip; yellow rectangle represents
woodchip. During the simulation, the user observes
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the movement of red and orange “termites”, picking-
up or dropping woodchips in the simulation space.
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Fig, 2 - 2D termite simulation

In order to visualize the 3D colony, we use Java
3D API. Java 3D defines the concept of a virtual
universe as a threc-dimensional space with an
associated set of objects [7]. Since Repast doesn’t
come with 3D visualization support, we separately
programmed a set of Java classes to be integrated
with Repast to realize and illustrate the 3D colony
architecture, Our 3D integration works with the
Repast original GUT in a way that the display surface
corresponds to commands sent from various buttons,
such as setup, step, pause and stop. With proper
time-delay between cach clock tick, the users can

observe the growth of the artificial colony
architecture.
Furthermore, we 1ncorporate mouse rotation

functionality into the 3D visualization. At each clock
tick, users are able to rotate the visual colony by left-
mouse click so that the colony is clearly-viewed
from  different angles (figure 3, 4).




Bei Wang, Dune Hoang, Idris Daiz, Chiedu Okpala, Tarek M. Sobh / Computing, 2004, Vol. 3, Issue 3, 40-50

R L
s
o

i
Bl e el S

Fig. 3

We present a simple example of architectures
grown by artificial agents moving randomly in the
3D space and performing simple “asynchronous
actions with purely local information™ [1], as ShE}WH

in figure 5.

4. HARDWARE SPECIFICATIONS AND
IMPLEMENTATION

4.1 Hardware Specifications

In order to achieve the same results from
Krieger's research [6], we needed to construct a
small-scale and low-cost robot that can perform
simple object removal tasks. These tasks including
moving on smooth surfaces, detecting new objects
(woodchips in our case), picking up an encountered
new object and dropping the woodchip it carries
when encountering

to detect objects within 20-30 cm range. Because the
final simulation requires a relatively large number of
robot agents, the robot should be easy and fast to
assemble. Since it moves around randomly, it should
be using batteries as its primary power supply (a
power cord will provide an extra obstacle). For more
economical reasons, the robot toolkit should be
reusable, reprogrammable and consume as little
power as possible. It should be easy to connect to
other devices. We chose the Boe-Bot Tool Kit from
Parallax Inc. and the Board of Education featured
BASIC Stamp embedded microcontroller [18].

4.2 Boe-bot Description

The following information, and figures 6-8,
describing the Boe-bot are available on the parallax
web site http://www.parallax. com/html pages/-
robotics/boebot/boebot.asp:

“The Boe-Bot 1s built on a high quality brushed
aluminum chassis that provides a sturdy platform for
the servomotors and printed circuit board. Mounting
holes and slots may be used to add custom robotic
equipment. The rear wheel is a drilled polyethylene
ball held in place with a cotier pm. Wheels are
machined to fit precisely on the servo spine and held

Fig. 4

another object. The robot
should come with sensors that are sensitive enough

-

Fig. 5

in place with a small screw.” In our case, to simulate
the termite’s woodpile building process, each Boe-

Fi.g* 6 - Boe-Bot

Bot needs a gripper, g

The main controller of Boe-Bot i is a BSZ IC
(BASIC Stﬂmp 2), which 1s a customized Ehlp ﬁ::rm
Microchip PIC 16C57C. The BASIC Stamp 2 has 16
1/0 pins, 2 dedicated serial port pins (1 input, 1
output), and room for 500 to 600 lines of code.
Figure 7 1s a detailed technical description for BS2-
[C as well as its schematic (figure 8).

4.3 Termite Description

In the following section, we define the term
“termite” as a Boe-Bot with a pair of whiskers and
gripper (Figure 9). The hardware design
methodology divides the implementation into two
major components; whiskers module and gripper

Module.
4.3.1 Whiskers Module

The Whiskers will be used as object detectors
since the BASIC Stamp can be programmed to
detect when a whisker is pressed. The whiskers are
touch sensors, whose circuitry is depicted in Figure
10. Once the termite touches a new object by it
whiskers, it will release the object it is holding (if
there 1s one). If the termite does not carry any object,
it will avoid the new object. Here, pin 4 and pin 6
connected to each switch circult monitor the voltage
at the 10 k€2 pull-up resistor. When a given whisker
is not pressed, the voltage at the pin connected to
that whisker 18 5 V (logic 1). When a whisker is
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pressed, the [/O line is shorted to ground, and the pin ~ sees 0 V (logic 0). See figure 10 for detﬁils.
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Fig. 9 - Termite (Boe-Bot with gripper)

A program will keep checking whether the logic
from pin 4 and pin 6 is changed. If there is a change,
a corresponding subroutine will be called to react to
the change, by either releasing the object it 1s
holding or avoiding the object it touched.

4.3.2 Gripper Moduie
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Fig. 11 - gripper

Right Left
Whisker Whisker

8

=
0
LD
ﬁli

Whiskers Schematic,

Fig. 10 - Whiskers schematic

The gripper (figure 11) has 3 pairs of IR sensors
used for object detection. They are used to control
the movement of the termite as well as the gripper.
The IR unit incorporates a standard IR LED with a
40 kHz IR receiver. The IR specification as well as
it schematic 1s given below (figures 12 and 13):

Size: Width = 15.8 mm, Length = 18.2 mm

Power Requirements: + Svdc, 2.6 mA

Note that the IR LED (emitter) and IR Detector
are both connected to the same 1/O pin.

4.3.3 Robotic Termite Working Scenario

The tenmite works as tollows: First, we let the
robot spin left (360 degrees), and keep detecting the
signals sent by both the left sensor and right sensor
of the gripper (figure 14). Second, if the left senor
signal is on, meaning that the robot detects an object
from the left, we let the robot turn left until the right
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sensor turns on, This indicates that the robot just

Fig, 12 - IR specification

Thus, we will let the robot turn right for a little
(an angle of around 3 degrees) to center the object
into the gripper (figure 16). Now the robot can keep
moving straight until the close sensor is on (this
means the object 1s inside the robot), and grips the
object (figure 17). Afterwards, the robot starts

Fig. 16

The robot can detect a new object by using its left
and right sensors. We use a touch sensor to enable
the detection of the second object (in order to release
the one 1t carries). However, there 1s one drawback:
if the new object the robot encounters 1s too big, 1t
could activate the touch sensor and the robot would

release the object right after gripping it.

passed the object (figure 15).

Sk

110 Pin 1 ]

3 IR Det, "_-_--":
% IR LED

Gad

Fig, 13 - IR schematic

searching for a new object. When it hits the new
object by either of it whisker, it releases the object it
1s carrying., After releasing the object, the robot
moves backward, turns an angle of 45 degrees, and
the same procedure is repeated.

Fig. 17

9. RESULTS AND CONCLUSIONS

Simulation results are shown below as screen
shots for the software implementation. Figure 18, 19
and 20 show 2D termite simulation.
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Fig. 18 - initial stage Fig. 19 - in progress Fig. 20 - final stage
Figure 21 shows a lattice swarm simulation done  (note there is an X-Y axis displayed in this
within a 20X20X20 3D space with 315 tick counts simulation).
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Fig. 21
Figure 22 - 25 shows a lattice swarm simulation  counts.
done within a 20X20X20 3D space with 38142 tick
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Figure 26 shows a simulation done within a
40X40X40 3D space with 91306 tick counts. Due to
the huge size of the simulation space, the resulting
structure remains relatively small-scale even after a
large number of tick counts. -
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Fig. 26

Comparing our simulation results with that of the
Wasp Nest Building Simulator, as shown in figure
27 and figure 28, it can be seen that both simulations

ey

: .
| slop 20000 ?* :

Il Growth Complexity: 66

Fig. 27: result from Wasp Nest Building Simulator

#

have resulted in interesting patterns which closely
match those found in nature [1, 19]. On the other
hand, comparing our simulation results with these of
Bonabeau’s, one can see that our software runs
smoothly and relatively fast, even on a PC, despite
that Bonabeau believes that “extensive simulations
on a powerful computer have to be performed in
order to " explore the behavioral space in a
satisfactory manner, even in this simplest case”[1].
However, one should not underestimate the dramatic
capabilities of PC’s in this time and age. We offer
3D rotations during simulation; enable users to
observe the visualization from various angles. While
Wasp Nest Building Simulator 1s implemented using
C/C++ and is to be distributed under GNU License
soon, our software is solely implemented in Java,
which is platform independent. Furthermore, our
implementation integrates neatly with the Repast
toolkit framework and may provide future
researchers convenience and user-friendly intertace.
Video clips showing the actual- software and
hardware simulations are available upon request by
contacting the authors,

Fig. 28: our simulation result
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