

Document Information

Title:Title:Title:Title: ImplemImplemImplemImplementation of a Distributed and entation of a Distributed and entation of a Distributed and entation of a Distributed and

 Simulation Modeling ProjectSimulation Modeling ProjectSimulation Modeling ProjectSimulation Modeling Project

AuthorAuthorAuthorAuthorssss:::: (i)(i)(i)(i) Syed SSyed SSyed SSyed S.... Rizvi Rizvi Rizvi Rizvi

Email:Email:Email:Email: srizv004@odu.edusrizv004@odu.edusrizv004@odu.edusrizv004@odu.edu
(ii) (ii) (ii) (ii) Adam LivingstonAdam LivingstonAdam LivingstonAdam Livingston

Email:Email:Email:Email: alivi001alivi001alivi001alivi001@odu.edu@odu.edu@odu.edu@odu.edu

Date:Date:Date:Date: April 09April 09April 09April 09, 2004, 2004, 2004, 2004

Status:Status:Status:Status: TentativeTentativeTentativeTentative

Report:Report:Report:Report: Distributed SimulationDistributed SimulationDistributed SimulationDistributed Simulation

 ECE 748/848ECE 748/848ECE 748/848ECE 748/848

ElectrElectrElectrElectrical & Computer Engineering Department ical & Computer Engineering Department ical & Computer Engineering Department ical & Computer Engineering Department

Old Dominion University Old Dominion University Old Dominion University Old Dominion University

NorfolkNorfolkNorfolkNorfolk----VAVAVAVA

1. Test Plan

The test plan is divided into the following two sections: non-integrated simulation model and an integrated
simulation model. The non-integrated simulation model deals with an individual simulation model that
generates, manage, schedule, and execute events for a single simulation engine. On the other hand, the
integrated simulation model deals with multiple simulation engines (typically three for our project) to
generate, manage, schedule, and execute events.

1.1. Phase I: Non-integrated simulation model

We divide this phase in two major parts. One describes object creation with respect to simulation object
and simulation engine classes.

1.1.1. Objects Creation

Figure 1 provides an overall functionality of a non-integrated simulation model.

1.1.2. Event Management, Distribution, and Generation

This section briefly describes the management, distribution, and generation of events.

1.1.2.1. Event Management

We create a simple array so that we can easily pull out which objects we want to schedule for an event.
Following figure shows the simple structure.

Obj-A1

Method-1

Obj-A2

Method-2

Obj-A3

Method-3

1 2 3 ………….. n

Simulation Engine

Attribute:

Method:

Method 1 to
Method 3 are
generating
events and
storing in a
structure.

Simulation
object class
has created
three objects

Create a
method that
should be in
the same
class which
generates a
sequence of
events
(typically 0 to
4)

Simulation Object Class

Simulation Engine Class

0 1 2 …………… n

1.1.2.2. Event Distribution

Events are uniformly distributed between numbers of objects (typically three for our project)

1.1.2.3. Event Generation

• Initially we start generating one and a half events per clock cycle
• As the testing goes on, we can vary the event generation rate. For instance, we may test the system

for more than 2 events per clock

1.2. Phase II: Integrated Simulation Model

The testing is based on three simulation engines as shown in the following figure:

0 1 2

• For multiple simulation engines, we follow the same uniform distribution for the other two
simulation engines.

• We decide 50% of the total generated events should schedule for our own simulation engines
where as the other 50% will be equally divided between the rest of the simulation engines (i.e.,
25% each in this example).

• In addition, in order to perform comprehensive testing that can use different choices of
parameters; the distribution for the other two simulation engines can be varied.

• Furthermore, in order to enable VALID communication among three simulation engines, there
should be a mechanism that can verify that the messages are sent and received in time stamp order.
Thus, this feature of our simulation project determines the effectiveness of a valid communication.

1.3. One Test Example

Input parameters:
These parameters can be set, for example, as follows:
L= 3, Events = 0 to 9, start simulation

Output verification:
This can be verified as follows:

• Events send and receive in time stamp order.
• Average queue waiting time for outgoing events when event distribution is

uniform.
• Average queue waiting time for an incoming link

 Obj-A1 Obj-A2 Obj-A3 Obj-An

SE0 SE1 SE2

• Etc…

Public Interface for the Simulation Engine Project

SimEng

+ SimEng();

+ ~SimEng();

+ int GetTime();

+ void StartSim(int stopschedtime);

+ bool SchedEvent(Delegate* del, int time);

Delegate
+ SimObj* objref;

+ int methodred;

+ int param1;

+ int param2;

SimObj

+ SimObj();

+ ~SimObj();

+ void EventHandlr(Delegate* del);

Classes not part of the Public Interface for the Simulation Engine Project

Pending Further Development

Event

+ Delegate* del;

+ int time;

EventListManager

+ EventListManager();

+ ~EventListManager();

+ bool Insert(Delegate* del, int time);

+ Delegate* GetNext();

+ int GetTime();

Graphic representation of the structure of the Simulation Engine Project

Simulation

SimObj
AppObj

EventHandler
Method

SchedEvent

StartSim

SimEng

Application

main()

Main Loop

SimObj
string name; // We will need a descriptive name for all objects in the simulation

SimObj(string name); // Constructor. Requires name as a parameter (maybe an empty string)

~SimObj(); // Destructor

Event * EventHandlr(Delegate* del); // Events can be spawned by handing events

SimEng
int time;
EventListManager * list;

// If SimEng is going to keep track of the time, it needs this variable
//Gives engine direct access to the event list manager

SimEng();

~SimEng(); // Destructor

int GetTime();

void StartSim(int stopschedtime); // Pass -1 as a parameter if there is no predefined end time

bool SchedEvent(Delegate* del, int time); // It is better to pass a pointer to Delegate, instead of a copy

bool ExecEvent(Delegate* del); // same

EventListManager
int size;
Event * currentpos;
int remaining;
Event * lstHead;

// If we do not need to implement rollbacks, we only need size; otherwise, we
will need all three
//currentPos points to the current event which is also the current sim
time
//are there any more events to execute
//starting point of event list

EventListManager();

~EventListManager(); // Destructor

bool Insert(Delegate* del, int time); // It is better to pass a pointer to Delegate, instead of a copy

Delegate* GetNext(); // Read the next Delegate and delete it from the list

Delegate* PeekNext(); // Read the next Delegate without deleting it

int GetTime(); // What time will this method return?

int GetSize(); // May be useful

int GetCurrentPos(); // May be useful if we implement rollbacks

int GetRemaining(); // May be useful if we implement rollbacks

Delegate
SimObj* objref; // cosmetic changes

int methodred;

int param1;

int param2;

Event // Who is using this structure? Is it really needed?

Delegate* del; // It is better to store a pointer to a Delegate

int time;

Event * prev //allows rollback

Event * next //to next event

Comments by Kevin

By Syed Rizvi

Simulation Engine

• simTime: Integer
• timeStamp: Integer
• eventType: Enumeration

scheduleEvent ()
timeStamp ()
timeAdvance ()

Simulation Object

• eventType: Enumeration
• globalTime: Integer
• presentState: Integer

eventHandler (method_Ref)

Bridge or friend class

Application Object

addEvent ()
removeEvent ()

event1 ()
event2 ()
event3 ()

Inheritance

Instead of addEvent() and removeEvent
() methods, we should have one
ScheduleEvent () method in Application
Object class.

The main responsibility of this method is
to search for an event in the event list,
which is created by CreateEvent ()
method of Simulation Engine class, that
has a closest TimeStamp to the current
SimTime.

Remove the event from the event list and
immediately call a CallEventHandler ()
method. The CallEventHandler ()
method calls an appropriate
eventHandler () method and send the
event (i.e., the event object) with event
type.

ScheduleEvent () method

CallEventHandler (EventObject, Event type)

Simulation EngineSimulation EngineSimulation EngineSimulation Engine class schedules all events by creating and assigning Time Stamp to each event as well as

managing overall simulation time.

SimTime is representing overall simulation time where as TimeStamp is associated with each newly created

event. In addition, timeStamp should be equal or greater than to the SimTime.

ScheduleEvent ScheduleEvent ScheduleEvent ScheduleEvent ()()()() method creates new events and assigns appropriate time stamp through TimeStamp TimeStamp TimeStamp TimeStamp ()method

. TimeAdvance ()TimeAdvance ()TimeAdvance ()TimeAdvance () is a method responsible to update overall simulation time.

Simulation Object Simulation Object Simulation Object Simulation Object class maintains event handlers (different types of events have their own events handler) and

can be called by CallEventHandler ()CallEventHandler ()CallEventHandler ()CallEventHandler () method (i.e., event1, event2 etc..).

When we create an object of Simulation Object class, we will use event type attribute to create the appropriate

eventHandler ()eventHandler ()eventHandler ()eventHandler () depending on the type of event.

