MFC Handout

Purpose: Handout to understand the basic concepts of MFC (Microsoft Foundation Classes

Intended Audience: Students interested to learn advanced OOPS programming using RAD (Rapid Application Development) tools.

Prerequisites: C++, Visual Studio (VB, VC++)
MFC Overview:
The Microsoft Foundation Class Library (MFC) is an "application framework" for programming in Microsoft Windows. Written in C++, MFC provides much of the code necessary for managing windows, menus, and dialog boxes; performing basic input/output; storing collections of data objects; and so on. All you need to do is add your application-specific code into this framework.
Class Overview

MFC contains well over 200 classes. These can be divided into several categories. A number of classes are involved in creating a graphical application user interface, such as frames, views, menus, dialogs and dialog controls. Other categories include graphics drawing classes, file and socket classes, database access classes, thread support and synchronization classes, OLE (Object Linking and Embedding) support classes, Internet support classes, collection classes such as arrays, lists, and maps, and a large number of other support classes.

The CObject Base Class

Most MFC classes are subclasses of CObject. This class provides a number of important services. The first of these is object creation with a CRuntimeClass object. An instance of CRuntimeClass contains the method CreateObject() that uses a function pointer data member to create an instance of some CObject subclass that supports dynamic creation. The CObject subclasses contain a CRuntimeClass reference, so that the exact subclass of any object can be determined at run time.

Another importart concept supported by CObject is serialization, the ability to store and retrieve instances of the class to and from external storage, such as files. This can be used to implement object persistence, OLE, and other useful mechanisms. Also, non-homogenous, type-safe collections of CObject subclasses are supported.

The Document/View Architecture

All graphical MFC applications have to be based on MFC's document/view structure. The application defines one or more document templates (CDocTemplate subclass) that contain CRuntimeClass references the following three classes:

· a document class (CDocument subclass),

· a frame class (CFrameWnd subclass),

· a view class (CView subclass).

The document class contains the internal representation of the application data. An instance is created by the framework for each new or opened document. The frame class describes the user interface of document windows of the application, typically multiple-document interface (MDI) frames. The view class shows a graphical representation of the document type. All classes as CObject subclasses.

A number of overridable methods in each of these classes allow the application to represent almost any kind of document. This basic structure is supported by a large number of support services, such as transparent printing and print preview support and OLE support.

Graphics Drawing Support

The graphics drawing support classes are modeled on the Win32 Graphics Device Interface (GDI). A number of convenience classes as well as overloaded constructors provide more flexible tools for drawing than the Win32 API, although the basic concepts are the same in MFC. Allocating and deallocating GDI resources and other error-prone tasks are simplified as the standard overridable methods in the CView class provide a default structure for implementing drawing accepting user input in a graphical application.

Dialog Support

MFC contains numerous classes for creating forms and other dialogs. The standard Windows controls are supported as well as the standard Windows common dialogs. Also, the Windows 95 new common controls and common dialogs are supported. MFC defines a standard dialog data exchange and dialog data validation (DDX/DDV) mechanism that provides a default structure for manipulating dialog data entered by the user. The record set and record view classes work with the database access classes, simplifying the display and editing of database rows presented on forms.

Other User Interface Features

The menu, toolbar, tabbed dialog, and status bar classes implement the latest Windows look and feel. The visual editing server and container classes, automation server and client classes, and other OLE support classes help implement object linking and embedding, the Windows standard data exchange between applications. The basic structure for an OLE support is present in these and the document/view classes, but a lot of work is left for the application code

MFC Hierarchy:

	CObject*
	MFC common base class

	
CGdiObject*
	Graphical device interface class

	

CPen
	Class used for drawing patterns and colors

	

CBrush
	Class that represents fill patterns and colors

	

CFont
	Font class

	

CBitmap
	Bitmap class

	
CDC*
	Device context base class

	

CClientDC
	Client area device context class

	

CPaintDC
	Painting area device context class

	
CMenu
	Menu class

	
CCmdTarget*
	Event-messages target base class

	

CWnd*
	Window base class

	

CDialog
	Dialog box window class

	

CStatic
	Static control class(for text labels)

	

CButton
	Button control class

	

CListBox
	List box control class

	

CComboBox
	Combo box control class

	

CEdit
	Edit box control class

	

CFrameWnd
	Frame window class

	

CWinThread*
	Task thread base class

	

CWinApp
	Windows application class

	
	

MFC Example:
Creating a MFC Project using VB.NET

Step 1: Select File(New(Project(MFC Application and press OK. As shown below

[image: image1.png][New Project

Project Types: Templates:
"3 Visual Basic Projects —
{1 visusl C# Projects Fﬂ M '3
20 Vsl 3 projets &l FlC FC!
3 Visual C++ Projects Makefile MFC ActiveX MFC
{2 Setup and Deployment Projects. Project Control Application

{20 Other Projects

3 vsualStud Soltions ??} @‘i S B

MRCOL WFCISMPL wing2 Console
Ertenson0l - woect =]

i applicaton that Uses the Microsaft Foundation Class Lary.

Neme: WFC_guide
Location: ‘CiiDocuments and SettingslyajulMy Documentsiyisual

Project wil be created at C:.. \rajuly Documentsi¥isusl Stucio Projects|MFC_guide.

s == b

Step 2: Select Dialog Based as application type and make sure MFC standard and Use MFC in a shared DLL are selected. Finally click on Finish button to create a project. [image: image2.png][MFC Application

Application Type

Specify DocumentView architecture support, language, and interface style options for your
applcaton,

Applcation ype: Projec sty
 single document B,
~ bkile docuets & W standard
@ aataied -
™ Use HIML dilog se MFC nashared UL
£~ ukiletoprvel docurens © UseMFC i statc rary

=

Resource language:

Englsh (United Stetes)

Frh | coal | v

You will get a Dialog,where you can create your own dialog controls like List Box, Buttons, Combo Box etc.,

Step 3: Let us create a simple MFC
application to understand the controls and event handling in MFC.

a. Click on the "TODO" text to select it. Press the Delete key to delete it.

b. Click on the dialog title bar to select it; then drag the resize handles to make the entire dialog a little taller and wider. You may have to adjust this again later.

c. Click on the edit box (ab|) tool in the palette tool bar, and drag to create three edit controls in the dialog box area.

d. Right click on the first edit control, and select Properties from the pop-up menu. On the General tab, change the ID from IDC_EDIT1 to IDC_ADD1.

e. In the same way, change the second edit control's ID to IDC_ADD2.

f. Change the third edit control's ID to IDC_SUM. Select the Styles tab on the property sheet and check the Read-only box.

g. Select the button tool (right below the edit box tool) in the palette, and drag to create a button in the dialog box area.

h. Change the button's ID to IDC_BUTTON_ADD and its Caption to "Add".
i. In the similar manner create two more buttons as Delete and Clear give its ID As IDC_BUTTON_DELETE and IDC_BUTTON_ClEAR.
j. Drag the list box from the palette .On the property sheet for the list box control, change the ID to IDC_HISTORY. Then, on the Styles tab, uncheck the Sort check box.
k. Drag static labels from the palette and place them in appropriate places as shown in the figure below.

l. Name the static labels as add history, + and =.

m. Save the changes you have made to the dialog box, which should now look like Figure
[image: image3.png]Add Histary.

Delete

Clear

Step 4: Now we need to add variable and event handlers for our controls.
a. Select IDC_ADD1 and right click on it and select Add Variable.... Change the Member variable name to add1 (not "m_addend1"). The Category should be Value and the Variable Type should be changed to int. Click OK. With IDC_ADDEND1 selected, enter 0 in the Minimum value box and 10 in the Maximum value box.

b. In the same way, add a variable for IDC_ADD2, using a name of add2 and the same min/max values.

c. Similarly, add a variable named sum for IDC_SUM; min/max values are not needed for this control, since it is read-only.
d. Select IDC_HISTORY and right click on it and select Add Variable.... Change the Member variable name to history_list .The Category should be Control . Do not change the default values.

e. Method1: Select IDC_BUTTON_ADD. And select properties, go to event handlers tab(the one with the lightning sign) click on BN_CLICKED. And click on the OnBnClickedButtonAdd to add the function. (You can also edit it to desired function name)
f. Similarly, create event handlers for delete as OnBnClickedButtonDelete and OnBnClickedButtonClear functions.

g. Method2: you can also add event handlers by right clicking on IDC’s and selecting add event handlers.

Step 5: Now modify the source code of your cpp file.

Copy and paste the following code inside the OnBnClickedButtonAdd() function:
void CMFC_guide1Dlg::OnBnClickedButtonAdd()

{

// Get data from dialog; if validation

// succeeded, perform the addition and

// put results back to dialog.

if (UpdateData(TRUE))

{

sum = add1 + add2;

UpdateData(FALSE);

// Make a string with the addends and sum, and

// add the string to the history list box.

ostringstream os;

os << add1 << "+" << add2 << "=" << sum;

history_list.AddString(os.str().c_str());

// Cause the window to be redrawn.

Invalidate();

}

}

· You will get a output as shown in below figure. Here you can add two int values and get the sum of it in the IDC_SUM field.

[image: image4.png][

<

Add Histary.

= [

il

Delete

Clear

Cancel

· Add the following highlighted lines to the beginning of your cpp file.

#include <string>

#include <sstream>

#using namespace std;

For OnBnClickedButtonDelete() and OnBnClickedButtonClear()paste the following code:
void CMFC_guide1Dlg::OnBnClickedButtonDelete()

{

// Get the index of the selected list entry, if any.

int index = history_list.GetCurSel();

// A value of LB_ERR means no entry was selected.

if (index != LB_ERR)

{

// If an entry was selected, delete it.

history_list.DeleteString(index);

}

}

void CMFC_guide1Dlg::OnBnClickedButtonClear()

{

// Remove all entries from the list box.

history_list.ResetContent();

}

Finally you will get a output as shown below .Here you will be able to add , delete the contents in the history list and also clear the contents in it.

[image: image5.png]5 MFC_guide1

B + [0 = [Add
Add Histary.
Delete
Clear

Cancel

MFC Example2:
1. Create dialog with the controls as shown below:
[image: image6.png]Title First Narme. Last Name

add

· Give ID’s as IDC_TITLE, IDC_ FN, IDC_ LN,IDC_BUTTON_ADD and IDC_history for the corresponding fields.
· Go to IDC_TITLE combo box’s property add Ms.;Mr.;Mrs.;Dr.;Prof.; in the Behavior(Data tab. Change the Type field to Drop List. Finally Uncheck Sort field.
· Add variables as shown below:
	ID
	Varible_Type
	Variable Name
	Category

	IDC_TITLE
	CString
	title
	Value

	IDC_ FN
	CString
	Fn
	Value

	IDC_ LN
	CString
	Ln
	Value

	IDC_history
	CListBox
	Namelist
	Control

	IDC_history
	CString
	Fullname
	Value

· Add the even handler OnAdd() to IDC_BUTTON_ADD and paste the following code.
 void CsimpleguiDlg::OnAdd()

{

int index;

CString strtitle;

UpdateData();

index=GetDlgItemText(IDC_Title,strtitle);

fullname=title+" "+fn+" "+ln;

namelist.AddString(fullname);

UpdateData(false);
}
Finally Build and run the code. You will get an output as shown below:

[image: image7.png]|

[Raseshwari I Gonwar

Title First Narme. Last Name

Dr. Julss Dichter

Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore98/html/_core_mfc_fundamentals.asp
http://devcentral.iftech.com/articles/MFC/default.php

